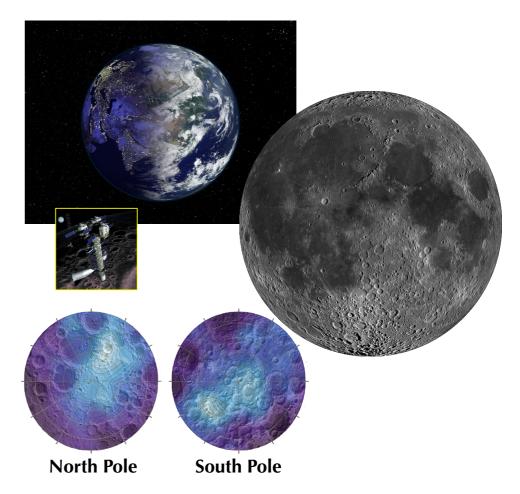
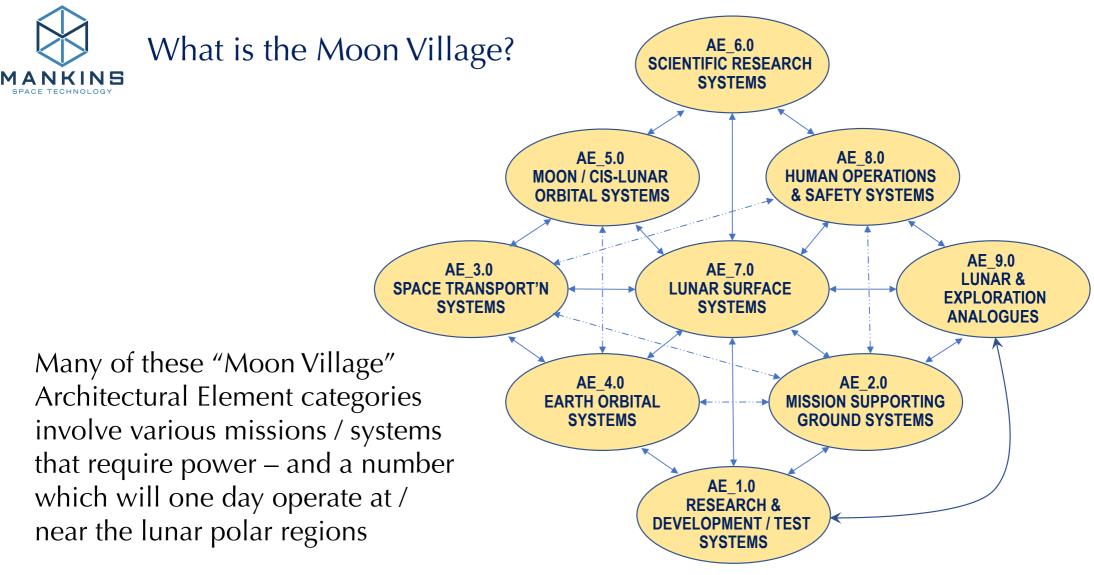
Powering Space

Delivering Affordable Energy for the Emerging cis-Lunar Economy

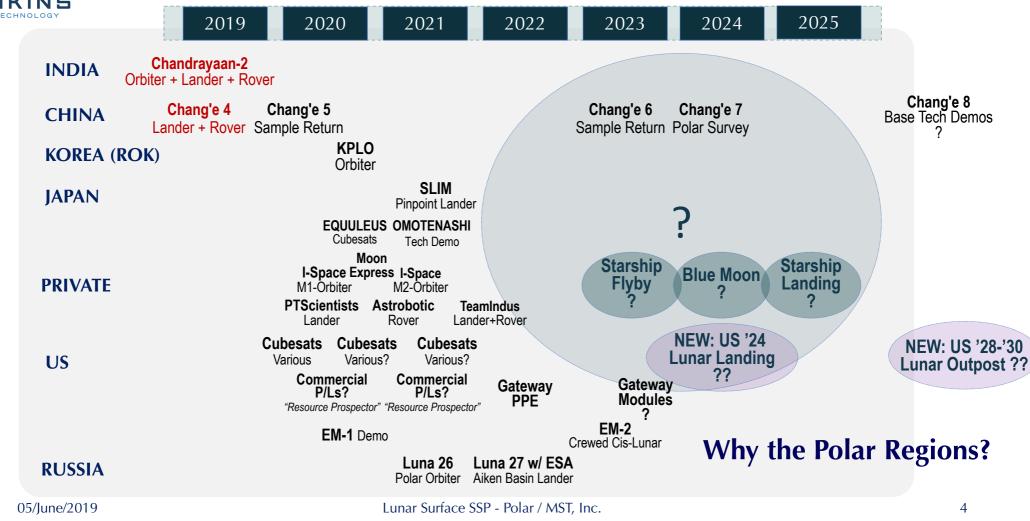
05 June 2019


John C. Mankins


President, Mankins Space Technologies, Inc. President, Artemis Innovation Management Solutions LLC Vice President, Moon Village Association

Scope of Cis-Lunar Markets

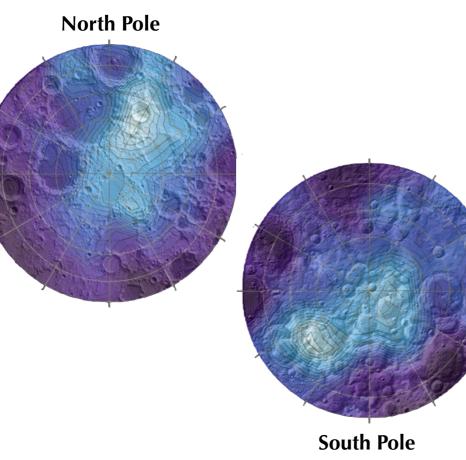
- "Geographic Scope" of the cis-Lunar Markets comprises:
 - Earth-to-Moon Transport & Operations
 - o Cis-Lunar Space
 - o Lunar Orbit
 - Lunar Surface: Polar Regions
 - Lunar Surface: Equatorial Regions, etc.



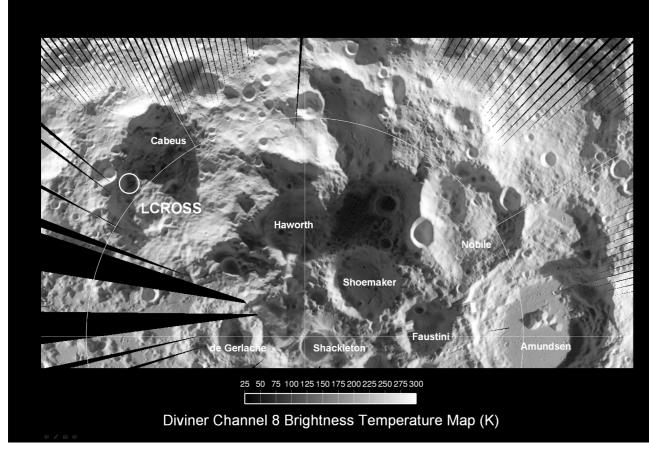
Lunar Surface SSP - Polar / MST, Inc.

MANKINS SPACE TECHNOLOGY

CURRENT Global Plans: Ambitious & Rapidly Changing


Why the Polar Regions? (1 of 2)

- Earth is tilted at an angle of about 23.5° with respect to what is known as the "plane of the Ecliptic" (i.e., the plane defined by Earth's orbit around the Sun)
- This tilt accounts for the seasons we experience in summer, the north pole is tilted toward the Sun and the weather in the northern hemisphere is warmer, and *vice versa* in the winter
- However, the Moon is tilted at an angle of only about 1.5° relative to the plane of the Ecliptic
- As a result, many canyons and craters at the Moon's poles are <u>never</u> illuminated by sunlight – and have been in shadow for billions of years
- Conversely, other locations at the poles the rims of major craters, the ridges of mountain ranges, plateaus, etc. – are almost constantly in sunlight


Why the Polar Regions? (2 of 2)

- During the past 20 years, various missions / probes have validated that vast amounts of volatiles – particularly water, probably in the form of ice – are captured in the extremely cold, permanentlyshadowed regions at the North and South poles of the Moon
- The Moon's polar deposits of volatiles can be mined, and transformed into both propellants (Oxygen and Hydrogen) and life support logistics (air, water, etc.); as a result, they represent a significant potential resource for future exploration, commercial development and eventual settlement
- The US, China, Japan, India, Europe and others are all examining options for exploration and later extraction / use of these resources

A Specific Market Opportunity: Lunar Polar Energy

Market Opportunity:

High-Power Lunar Surface Operations at a key location of interest is the Polar Regions

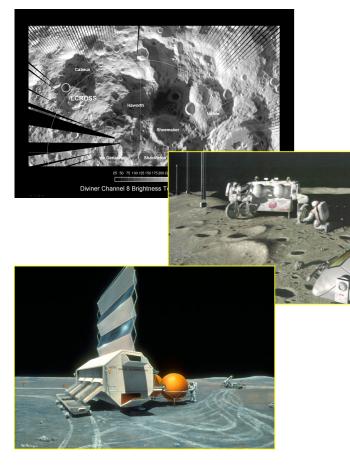
Example: the South Pole

What is the Challenges / Solutions?

- Accomplishing mining, extraction and processing of lunar resources will require considerable **energy / power**
- The four principal options for energy in deep space / planetary missions are:
 - Primary Batteries, for very short duration missions power up to 10s of Watts → X Requires Regular Recharging
 - Radioisotope Thermoelectric Generators (RTGs), for very long duration missions power up to 100s of Watts, but very toxic radioactive materials → X Costs are very High, and Permission to Launch Impractical
 - Solar Photovoltaic Arrays (often with Batteries), for 1-20 year duration missions power up to 10s of kilowatts or more, but only where the sunlight is available → X There is no sunlight where the volatiles / water ice is deposited
 - Space Nuclear Reactors, for missions up to 10 years duration power ranging from 10-1,000 kW, but with radioactive materials that → √ Potential Option; although system becomes dangerously radioactive once the reactor is "turned on"

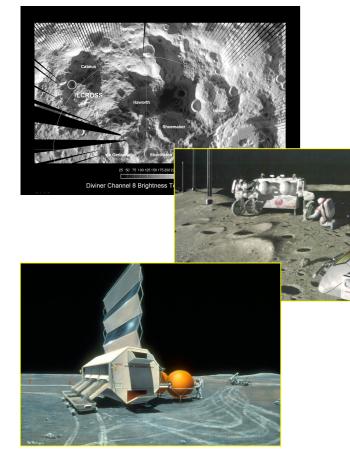


And, the permanently shadowed areas of the Moon's polar regions are 1,000s of meters lower in elevation, and 5-50 kilometers separated from sunlit locations → Conventional Power Cables are impractical


Another Option: Wireless Energy

- Harvest and/or Generate Power in one of the "Peaks of Eternal Light" (or similar) and wirelessly transmit it to systems / operations in the cold / permanently shadowed areas...
- The several new options for energy in deep space / planetary missions are:
 - **Reflectors**, for short range energy redirection, this can be highly interesting
 - Solar Power with Wireless Power Transmission via Lasers, often discussed for transmission to a single system
 - Solar Power with WPT via Microwave Transmission, often discussed for transmission to an area
 - Space Nuclear Power with WPT via Laser or Microwave Transmission, see above...

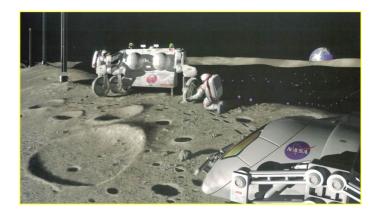
What are the Requirements for Polar Resources? (1 of 2)



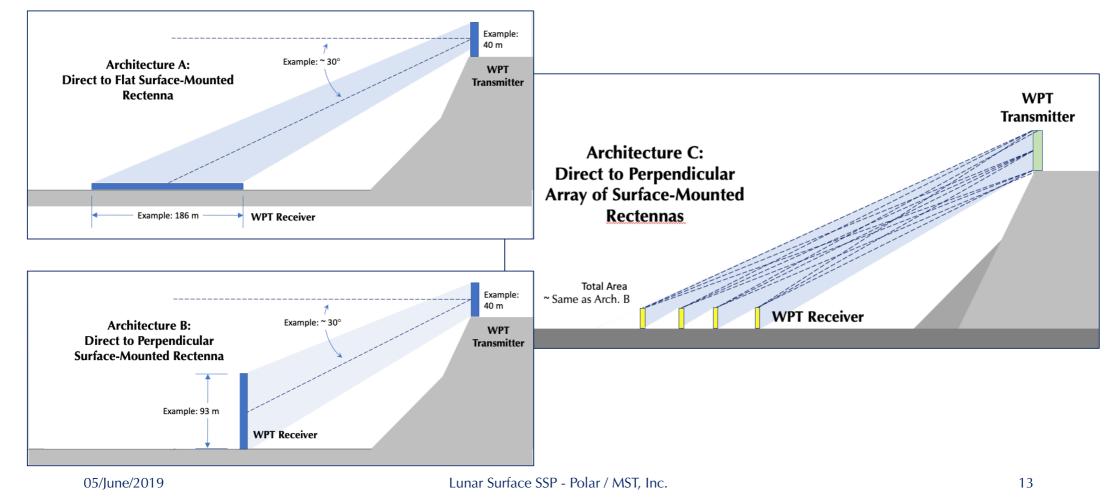
• Types of "Users"

- Mining / Ice Harvester Systems
- Ice / Regolith Processing
- Volatiles Processing Storage
- Supporting "Systems" (e.g., Systems to support Occasional Astronaut Visitors)

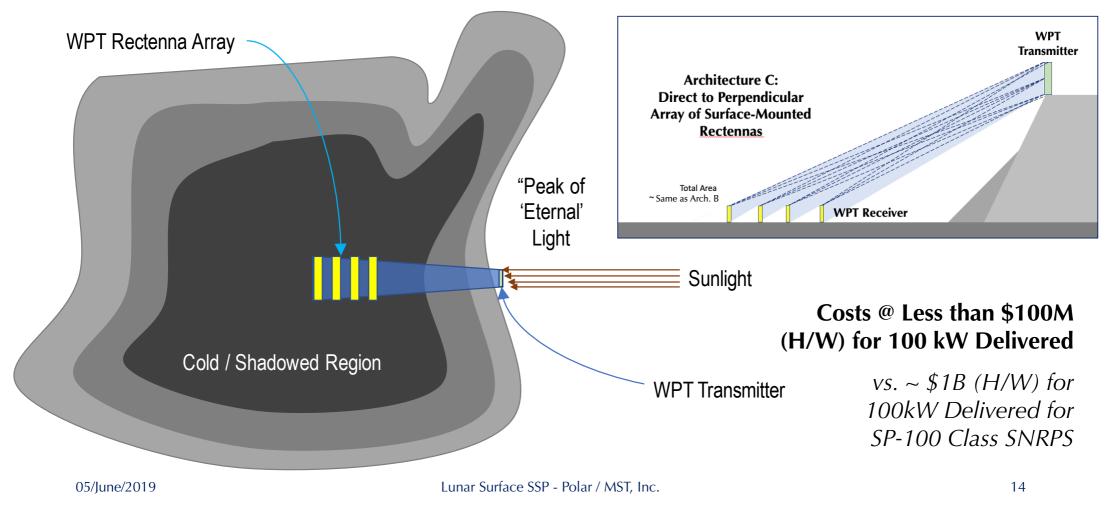
What are the Requirements for Polar Resources? (2 of 2)



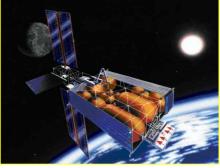
- Power Levels
 - Individual systems ~ 2-20 kW (wag)
 - Aggregate SoS ~100-1,000 kW (added-up wags)
- Lifetime
 - Months to Decades (related to power level)
- Environments
 - In the Sun:
 - ✓ Vacuum, Temperatures @ ~240°K, Dry Dust, Human
 / Outpost Operations
 - In the Shadow:
 - ✓ Vacuum + Potential Outgassing, Temperatures @ ~50°K, Dry Dust + "Processed Dust", Occasional Human / Support Systems Operations


• Another option exists, however...Lunar Surface-Based Space Solar Power

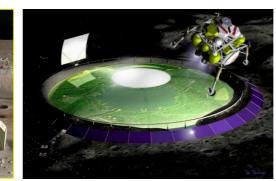
- Solar energy can be harvested via photovoltaic (PV) arrays located in the sunlit high-lands, and transmitted wirelessly with good efficiency to receivers deep within the permanently-shadowed regions where the power is needed
- Ranges: e.g. ~10-40 Kilometers...
- The technologies to accomplish this exist in the laboratory -- and are ready to be applied to the challenge of Lunar polar power...



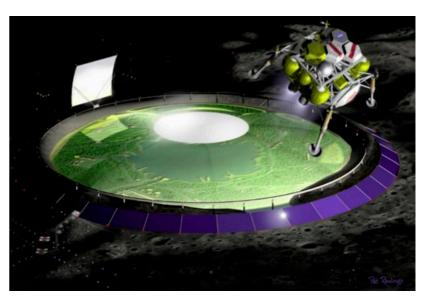
Lunar Surface-Based Space Solar Power Architectural Options





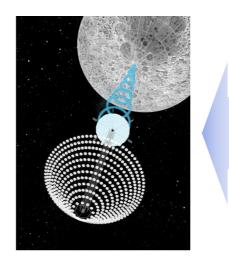

Other Power Needs for Cis-Lunar Space - Examples

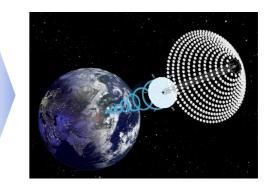
- Early
 - Robotic Missions
 - Cis-Lunar Orbiting Outposts (e.g., the Gateway)
 - Lunar Surface Sortie Human Missions
- Later
 - Cis-Lunar Orbiting Platforms
 - Lunar Surface Outposts
- Much Later: Settlements


- Locations:

 Orbiting, Polar & Elsewhere
- Power:
 - kW Growing to MW Growing to 10s to 100s of MW

05/June/2019


Minimum Number of People	≥ 120
Agricultural Area per Person	~4,000 m ² / person
Peak Power Per Unit Area (for illumination, H ₂ O processing, etc.)	~800 W / m²
Total Area Required	~480,000 m ²
Effective Settlement "Diameter"	~800 m
Settlement Power Required	~350 ± MW



Powering Space → Powering Earth Technology R&D → Demonstrations on Earth → Demos in Space →Demos on Moon → Operations on Moon --> Power Beyond

Lunar Surface SSP - Polar / MST, Inc.

- Great demand / potential involving "powering" developments in Cis-Lunar Space
- Potential Funding Sources (US and International) ...
 - Commercial Ventures
 - o "COTS type" programs
 - o Government Programs
 - \checkmark Focused on the Moon
 - ✓ Relating to SSP/WPT

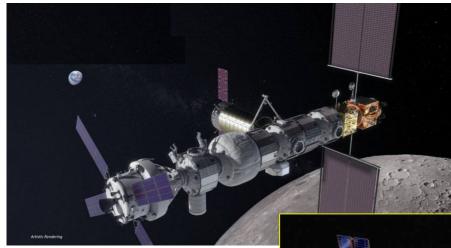
To Discuss Further: contact mankinspacetech@gmail.com

Back-Up Slides

AE_3.0 / SPACE TRANSPORTATION SYSTEMS

• These Architectural Elements comprise a range of vehicles and facilities that are to be used for transporting lunar-related missions / systems to space, in space and to/from the surface of the Moon

05/June/2019

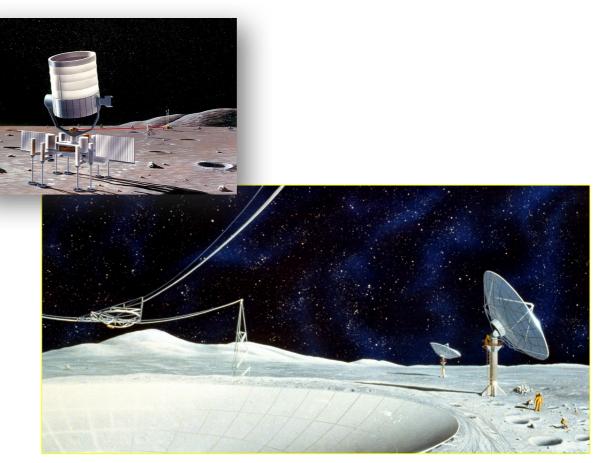

Lunar Surface SSP - Polar / MST, Inc.

20

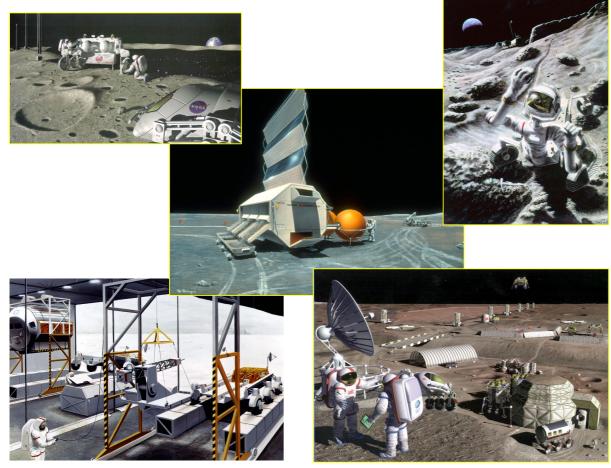
What **Are** the "Cis-Lunar Markets"? EXAMPLES...

AE_4.0 / EARTH-ORBITAL SYSTEMS

 This category of AE comprises a range of vehicles and systems operating in Earth orbit (typically LEO, MEO and/or GEO) that support lunar-related missions / systems operations and capabilities.


AE_5.0 / MOON / CIS-LUNAR ORBITAL SYSTEMS

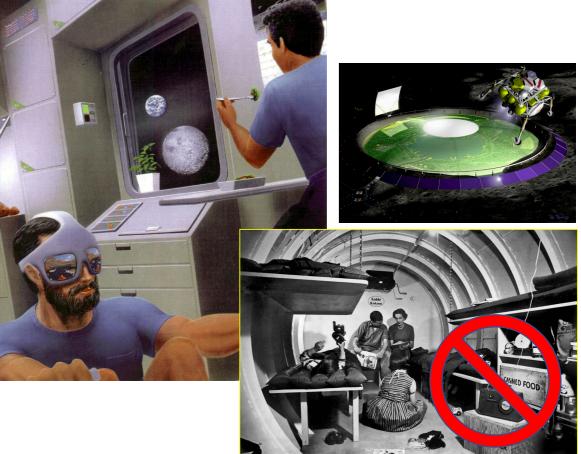
 These AEs comprise a range of vehicles and systems operating in cis-Lunar orbit (typically a Libration Point, lunar orbit, etc.) that support lunarrelated missions / systems operations and capabilities.



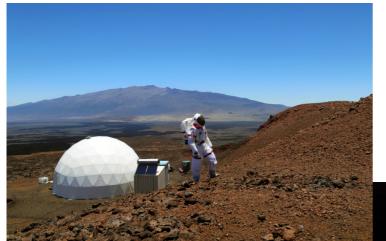
AE_6.0 / SCIENTIFIC RESEARCH SYSTEMS

 This category comprises a systems, payloads and capabilities in space that accomplish scientific research programs, including those operating in Earth orbit, cis-Lunar space, or the lunar surface

AE_7.0 / LUNAR SURFACE SYSTEMS


 This category of Architectural Elements comprises a wide range of systems, payloads and capabilities delivered to and/or operating on the surface of the Moon that accomplish various functional requirements for scientific, commercial and/or human exploration focused programs and/or projects

^{05/}June/2019


AE_8.0 / HUMAN OPERATIONS & SAFETY SYSTEMS

• These AEs involve a diverse set of systems, payloads and capabilities in space that enable safe and/or affordable human presence and operations, including those operating in Earth orbit, cis-Lunar space, or the lunar surface.

What **Are** the "Cis-Lunar Markets"? EXAMPLES...

<image>

AE_9.0 / LUNAR & EXPLORATION ANALOGUES

 This category comprises "analogue" testbeds -- which are specialized capabilities to test concepts of operations -including habitation humansystems design concepts, etc.

05/June/2019

Lunar Surface-Based / Polar Space Solar Power Case Study : 100 kW Delivered to Shadowed "Floor" (1 of 3)

WPT End-to-End Calculations			
Frequency	2,450,000,000	Hz	
Wavelength	0.122364269	meters	
Distance	25	km (Xmttr-Rcvr)	
D (Xmttr)	40	meters	
"Tau"	2.44	Parameter	
Transmission Eff	99%	Percentage	
Max Beam	96%	Beam Coupling	
Required Beam	<u>39%</u>	Beam Intercepted	
Xmttr DC Input	398,233	Watts	
Xmttr DC-RF Eff.	80.00%	Percentage	
Xmttr RF Output	318,586	Watts	
RF-DC Efficiency	<u>85%</u>	RF-to-DC	
D (Perpendicular Rcvr)	58	meters	
RF Power @ Rcvr	117,647	Watts	
DC Power @ Rcvr	100,000	watts	
05/June/2019			

SSP Transmission System - in Permanently Illuminated Region				
Duration of each Lun		708		
% time SSP Array in th	he Sun	80.0%	percentage	
Hours SSP Array	in Sun	566.4	hrs	
Average Temperature	e (PIR)	243	°К	
Average Temperature	e (PSR)	40	°К	
Insc	olation	1,368	W/m^2	
SSP Receiver - in Permanently Shadowed Region				
% time WPT Receiving I	Energy	80.0%	percentage	
Hours WPT Receiving I	Energy	566.4	hrs	
Average Temperature	e (PSR)	40	°К	
Insc	olation	1,368	W/m^2	
Balance of Systems – Energy St	orage in	PSR l	Balance of Sys	
Time of Storage	141.6	hrs Tota	al Area of Reflec	

Storage at Receiver Required 14,160.0 kWh

ystems – Heliostats in PIR

Total Area of Reflector Array	1,571	m^2
Area of A single Reflector	4	m^2
Efficiency of A Reflector	0.9	Percentage

Lunar Surface-Based / Polar Space Solar Power Case Study : 100 kW Delivered to Shadowed "Floor" (2 of 3)

System / Module Sizing (1 of 2)			
System Element Type	System Size	Module Size	
WPT Transmitter	1,256.6	1	m^2
WPT Receiver	2,671	1	m^2
PV Array	1,256.6	4	m^2
Heliostat Array	1,570.8	4	m^2
Energy Storage	14,160	100	kWh

System / Module Sizing (2 of 2)

System Element Type	Number of Modules	Module Mass (kg)	System Mass (kg)
WPT Transmitter	1,257	2	2,513
WPT Receiver	2,671	2	5,342
PV Array	314	4	1,257
Heliostat Array	393	4	1,571
Energy Storage	142	8	1,133

System / Cost Estimate			
System Element Type	Cost Estimation Relationship (\$/kg)	System H/W Cost (\$,M)	Transport Cost (@ \$50K/kg)
WPT Transmitter	\$1,977	\$4.97	\$126
WPT Receiver	\$692	\$3.70	\$267
PV Array	\$2,018	\$2.54	\$63
Heliostat Array	\$2,018	\$3.17	\$79
Energy Storage	\$1,441	\$1.63	\$57
TOTAL	N/A	<u>\$16M</u>	<u>\$591 M</u>

05/June/2019

<u>\$1,800</u>

Lunar Surface-Based / Polar Space Solar Power Case Study : 100 kW Delivered to Shadowed "Floor" (3 of 3)

- Assumed Lifetime: 10 years
- Baseline Alternative Solution: Space Nuclear Reactor Power System

 SP100 or Prometheus type; tailored for Lunar Surface Deployment
 - o Mass: ~6,000 kg (including lander / radiator / etc.)
 - Cost: ~\$2,000 M (including transport, operational engineers, etc.)
 - o LCOE: ~\$225 / kWh
- Lunar Surface Based SSP System
 - Estimated Cost: ~\$607M (including \$16M SSP System Hardware Cost)
 - EXAMPLE Economic Performance
 - ✓ SSP System Hardware "Sales" Price: ~ \$1,200M
 - ✓LCOE: ~\$204 / kWh
 - ✓ Simple Profit: ~ 75:1 (neglects cost of money, etc.)