SPECTRE

Spectral Photovoltaic Energy Collection & Transmission to Earth

2018-2019 ISSP Student Competition Semi finals at ISDC 2019 in Arlington, VA

C.M. Groen B. Kevers D.A.S. Kreynen K. De Smaele J.J. Spaander

Supervised by Dr. J. Guo

Contents

- Introduction
- Problem statement
- Solution
- Design
- Sustainability
- SPS-Alpha comparison
- Conclusion
- Recommendations

ŤUDelft

LR: Jamie – Lars – Chris – Berend Joshua – Dylan – Bart – Kasper - Rik

Problem Statement

Source: Natural Resources Council of Maine

Design Case

Power Collection

Source. Nysy

E.

Power Collection

Power Collection

Production

In-orbit construction:
High packing efficiency
No launch loads on structure
Large and light S/C

Integration Animation

Sustainability

Environmental

Economical

F

Environmental Sustainability

Economical Sustainability

- Minimum 🗕 Maximum 💻 Average

Delft

SPECTRE

SPS-ALPHA

In-GEO cluster scalable in numbers 200 gr. CO2/kWh **ŤU**Delft

Conclusion

Recommendations

Filter Development

Recommendations

In-Orbit Production

Thank You!

Contact: J.J.Spaander@student.tudelft.nl

Delft

SPECTRE

Backup Slides

General Backup Slides

Ē

Further Recommendations

- Power transmitter
- Thermal control
- In-orbit production

Mass Budget Overview

Subsystem	Total SPECTRE Mass Breakdown [tonnes]	Mass Breakdown per Spacecraft [tonnes]	Mass Breakdown (%)
Propulsion	35	1.8	12.11
ADCS	49	2.4	16.96
Thermal Control	60	3.0	20.76
TT&C	0.3	0.01	0.10
Power Collection	64	3.2	22.15
Power Storage	8	0.4	2.77
EPSY	26	1.3	9.00
Maintenance	20	1.0	6.92
Structure	26	1.3	9.00
Total	289	14.4	100.0

Mass Iterations

Optimal Number of Spacecraft

Concept Overview Backup Slides

Power Collector: the <u>'Knikkerba</u>an'

ŤUDelft

Secondary Mirror

Power Collector: the 'Knikkerbaan'

ŤUDelft

Bandgaps Backup Slides

Power Collection Efficiency Choices:

	Spectral Splitting	Photovoltaic Cells	Thermoelectric Generators
Mass	\checkmark		
Cost	\checkmark		
Area	\checkmark		
Technology Readiness Level		\checkmark	
Efficiency	\checkmark		

BANDGAP: SOLAR SPECTRUM

BANDGAP: SUN MODEL

BANDGAP: OPTIMISED SINGLE GAP

BANDGAP: ADVANCEMENTS IN SOLAR TECHNOLOGY

BANDGAP: GAPS OPTIMISATION

BANDGAP: CHOSEN GAPS

BANDGAP: BANDGAP DESIGN

Solar Array Stage	1	2	3	4	5	6		
Solar Array Stage Length	7.127	6.190	5.254	4.450	3.767	3.181		
Radius [m]	24.25	24.25						
Area $[m^2]$	1086.8	943.2	800.5	678.1	574.0	484.6		
Bandgap [eV]	2.64	1.91	1.45	1.08	0.81	0.55		
Solar Cell Material	In _{0.2} Ga _{0.8} N	In _{0.42} Ga _{0.58} N	GaAs	In _{0.25} Ga _{0.75} As	In _{0.45} Ga _{0.55} As	In _{0.75} Ga _{0.25} As		

Transmitter Backup Slides

2 transmitters

2 transmitters

1 transmitter on boom

High wavelength transmitter

Filters Backup Slides

Filters

Coating 3	1	
Coating 2		
Coating 1		nm range
Fused Silica		

Filters

Filters

Truss cross section

Mirrors

Power Collection System: Dimensions

Dimension	Primary	Secondary
Focal Length [m]	187.42	275.52
X parameter [1/m]	0.001334	0.000907
Y max [m]	37.89	2.37
Radius [m]	180.80	51.15
Frontal Area [m²]	102695	8219
Parabolic Area [m ²]	117944	8469
Black Spot Frontal Area [m ²]	8219	658
Black Spot parabolic Area [m ²]	8584	663
Mirror Frontal Area [m ²]	94475	7562
Mirror Parabolic Area [m ²]	109360	7806

Component	Concentration Factor
Solar Cells	17
Filters	384
Seconndary Mirror	10
Primary Mirror	1

bandgap	1	2	3	4	5	6
Area [m ²]	1086	943	801	678	574	485
Length [m]	7.127	6.190	5.424	4.450	3.767	3.181
Radius [m]	24.25	24.25	24.25	24.25	24.25	24.25

Filter Schematic View #1

Filter Schematic View #2

Solar Array and Filter Schematic

Production Backup Slides

Modular Production

Ē

Additive Manufacturing of Trusses

15

Robotic Assembly: ISS

TUDelft © MacDonald, Dettwiler and Associates

Robotic Assembly: Joining Trusses

© Tethers Unlimited, Inc.

Production of Large Mirrors

Secondary Mirror

ŤUDelft

Production of Large Mirrors (1/4) Centrifugal Space Web

Production of Large Mirrors (2/4) Tensioning of Guy-Wires

Production of Large Mirrors (3/4) **Chemical Vapor Deposition**

Ē

Production of Large Mirrors (4/4) Robotic Web Crawlers

© ESA

Large Earth Produced Parts

Photovoltaics

Filters

Robotics specs

	Canadarm2	Dextre	Mobile Base System
Length	17.6 m	3.5 m	-
Mass	1641 kg	1662 kg	1500 kg
Handling Capacity	116,000 kg	600 kg	20,900 kg
Degrees of Freedom	7	15	Fixed
Peak Power	2000 W	2000 W	825 W
Average Power	1200 W	600 W	365 W

Web crawlers:

Delft

- 0.5 years of application time
- Speed: 3.22 mm/s (primary crawlers);
- 0.528 mm/s (secondary crawler)
- CVD power: 6.2 W (each); 0.88 W
- Crawler power: 19 W (each); 2.6 W
- Lifetime aluminium: 147.6 kg (each); 10.5 kg

Aluminium/Zylon characteristics

	Aluminium 1199-O (reflective thin film)		
Specific gravity	2.70 g/cm^3	(
Hardness (Brinell)	12		Zylon ^{IM} high performance fibre (space webs)
Tensile strength (ulimate)	45.0 MPa	Туре	Toyobo Co., Ltd. Zylon™ HM PBO fibre
Tensile strength (yield)	10.0 MPa	Specific gravity	1.56 g/cm ³
Elongation at break	50%		37 cN/dtex
Modulus of Elasticity	62.0 GPa	5.8 GPa	
Poissons ratio	0.33		590 kg/mm ⁻
Shear modulus	25.0 GPa	Tensile modulus	270 GPa
Shear strength	34.0 MPa	Tensne moutuus	$28000 \ kg/mm^2$
	21.8 μm/m °C (@-50 - 20 °C)	Elongation at break	2.5%
	$23.6 \mu\text{m/m}^{\circ}\text{C}$ (@20 - 100 °C)	Decomposition temp.	650 °C
Thermal exp. coeff. (linear)	24.5 μm/m °C (@20 - 200 °C) Thermal exp. coeff.		$-6 * 10^{-6}$
	$25.5 \mu m/m ^{\circ}C (@20 - 300 ^{\circ}C)$	Creep parameter	1.1 ± 10^{-4}
Specific heat	0.900 J/g-°C	(50% of breaking load)	1.1 * 10
Thermal conductivity	243 W/m-K	Thermal conductivity	42.9 W/m-K
Melting point	660 °C	Specific heat	1500 W/kg-K
Deflection cooff	0.0	Emissivity	0.8
The second coefficients	0.9	Hardness	941 MPa
Thermal conductivity	237 W/m-K		
Emissivity	0.04		

PEEK characteristics

UDelft

	PEEK/CF composite (trusses)	PEEK thermoplastic (joints)		
Туре	Victrex [™] PEEK 90HMF40 (40% carbon fibre)	Victrex [™] PEEK 450FC30		
Specific gravity	$1.45 g/cm^3$	$1.45 g/cm^3$		
Hardness (shore D)	88.5	83		
Tensile strength at break	85.0 MPa (@275 °C) 145 MPa (@180 °C) 220 MPa (@120 °C) 330 MPa (@23 °C)	35.0 MPa (@275 °C) 45.0 MPa (@225 °C) 55.0 MPa (@175 °C) 95.0 MPa (@125 °C) 150 MPa (@23 °C)		
Elongation	1.2% (at yield)	2.3% (at break)		
Tensile modulus	43.3 GPa	13.0 GPa		
Flexural strength	120 MPa (@275 °C) 220 MPa (@180 °C) 350 MPa (@120 °C) 475 MPa (@23 °C)	45.0 MPa (@275 °C) 80.0 MPa (@175 °C) 160 MPa (@125 °C) 230 MPa (@23 °C)		
Flexural modulus	11.5 GPa			
Compressive strength	120 MPa (@200 °C) 250 MPa (@120 °C) 310 MPa (@23 °C)	45.0 MPa (@200 °C) 110 MPa (@120 °C) 170 MPa (@23 °C)		
Thermal exp. coeff.	35.0 μm/m °C (below glass transition)	45.0 μ m/m °C (below glass trans.)		
(linear)	80.0 μ m/m °C (above glass transition)	115 μ m/m °C (above glass trans.)		
Thermal exp. coeff.,	$1.00 \mu\text{m/m}^{\circ}\text{C}$ (above glass transition)	$15.0 \mu\text{m/m}$ °C (above glass trans.)		
(parallel to flow)	$3.00\mu\text{m/m}^\circ\text{C}$ (below glass transition)	20.0 μ m/m °C (below glass trans.)		
Thermal conductivity	2.00 W/m-K (average) 4.30 W/m-K (along flow)	0.850 W/m-K (average) 1.70 W/m-K (along flow)		
Melting point 343 °C		343 °C		
Glass transition temp.	143 °C	143 °C		
Processing nozzle temp.	385 °C	385 °C		
Specific heat	1390 Watt/kg-K	1390 Watt/kg-K		
Emissivity	0.75	0.75		

Parts produced on earth

Cable harness (incl. connections) Web crawling robots Primary space web Secondary space web Docking interface Filter parts Furled photovoltaics Sensors and cameras Thrusters, fuel lines, valves, filters Heat pipes EPS parts (capacitators, inductors, controllers, switches etc.) Raw materials (PEEK/CF and PEEK filament, aluminium powder, adhesives)

SPECTRE

Sustainability Backup Slides

Sustainability Challenge:

Low Scrap

Non-Toxic

Sustainability: Scrap Additive Manufacturing

On Earth vs. In Space: No Scrap!

Sustainability: Toxicity

Raptor Engines

UDelft

European Union

Sustainability: Toxicity

(Mostly) Non-Toxic Materials

SUSTAINABILITY: SUBSYSTEM

Energy and CO2 Emissions

Subsystem

SUSTAINABILITY: ENERGY BALANCE

Energy Production in Space	286276869803	kWh
Estimated Transmitter Efficiency	0.15	
Energy Production on Earth	42941530470	kWh
EOL Energy balance	42937916472	kWh
CO ₂ tonnes/kWh	0.000160	Tonne/kWh
CO ₂ kg/kWh	0.160	kg/kWh
CO ₂ g/kWh	160	g/kWh
Europe average	293	g/kWh

SUSTAINABILITY: SUMMARY

Net energy produced in space: 286 TWh

Net energy on Earth: 42.9 TWh

Net energy adjusted: 42.8 TWh

SUSTAINABILITY: ENERGY SOURCE COMPARISON

SUSTAINABILITY: ENERGY SOURCE COMPARISON

Potential CO2 in

CO2 from Conversion CO2 After Transformation (Re-distributed) Consumption CO2 from Distribution Losses Total CO2 produced by economy CO2 produced by industry Emissions used to produce product or transport product

Material:	kWh/tonne	CO2tonne/tonne	kWh/m³	CO2tonne/m ³
Steel	2713	4629	21784	37173
Non ferous metals	29199	59665	133736	273272
Aluminium	4632	9465	12243	25017
Copper	4632	9465	41254	84297
Composites (CFRP based)	15278	32660	35139	75118
Plastics	2706	5785	6224	13306
Non-ferrous minerals	1386	3490	3866	9733
Cement and lime	1386	3490	3881	9771
Ceramics	1386	3490	2953	7433
Quartz assumed same as glass	1386	3490	3881	9771

STRUCTURAL SUSTAINABILITY					
Material:	Coefficient	Production Energy Coef	Production Scrap Coef	Production Viability	Final Score
Steel	2	0.2	0.1	1	0.04
Non ferous metals	0	0.3	0.1	1	0.00
Aluminium	6	0.4	0.2	1	0.48
Copper	0	0.2	0.1	0.5	0.00
Composites (CFRP based)	2	1	1	1	1.52
Plastics	1	1	1	1	0.62
Non-ferrous minerals	26	1	1	0	0.00
Cement and lime	21	1	0.9	0	0.00
Ceramics	585	0	0.2	0	0.00
Quartz assumed same as glass	40	0	0.9	0	0.00

EPSY								
Material:	Resistivity [Ohmm]	Loss Adjusted Coef						
Steel	0.0000016	0.06						
Aluminium	0.00000029	0.34						
Copper	0.000000172	0.58						

РОСО									
Material:	Coefficient	Reflective Performance	Final Score						
Steel	1.78	0.4	0.71						
Aluminium	4.71	1	4.71						
Copper	0.42	0.2	0.08						

Sustainability: Launcher

Sustainability: Launcher

	Payload to LEO (kg)	Cost total (million EUR)	Cost per kg (EUR/kg)	Reusability	Specific Impulse (s)	Thrust (N)	Toxic Elements	Availability	Reliability	Burn time thrust adjusted (s)	Derived Prop mass(kg)	Derived Prop mass per payload (kg/kg)
BFR	150000	7	46.67	Fully	330	52700000	CH4	Not Developed			2850450	19
Falcon Heavy	63800	76.5	1199.06	First Stage	285	22827380	RP-1	Developed	1	162	1322687	21
Falcon 9	22800	52.7	2311.40	First Stage	285	8299260	RP-1	Developed	0.97	162	480884	21
Proton K	19760	65	3289.47	None	285	8829000	UDMH-N2O4	Developed	0.9	120	378947	19
Proton M	21600	65	3009.26	None	285	9535320	UDMH-N2O4	Developed	0.9	120	409263	19
Proton M/Briz-m Enhanced	23000	65	2826.09	None	285	10016010	UDMH-N2O4	Developed	0.9	123	440642	: 19
Delta IV-M+(4.2)	11920	400	33557.05	None	321	5171538	HTPB	Developed	0.82	220	361390	30
Delta IV-M+(4,2) (RS-68A)	12000	400	33333.33	None	321	5171538	нтрв	Developed	0.82	220	361390	30
Delta IV-M+(5,2) (RS-68A)	10220	400	39138.94	None	321	5171538	нтрв	Developed	0.82	220	361390	35
Delta IV-M+(5,4)	13450	400	29739.78	None	321	5171538	HTPB	Developed	0.82	220	361390	27
Delta IV-M+(5,4) (RS-68A)	12820	400	31201.25	None	321	5171538	нтрв	Developed	0.82	220	361390	28
Delta IV-H	22980	400	17406.44	None	321	5171538	HTPB	Developed	0.82	220	361390	16
Delta IV-HU (RS-68A)	25980	400	15395.46	None	321	5171538	нтрв	Developed	0.82	220	361390	14
Atias V 401/402	12500	137	10960.00	None	312	3827862	HTPB-RP-1	Developed	0.99	240	300250	24
Atlas V 501/502	10300	137	13300.97	None	312	3827862	HTPB-RP-1	Developed	0.99	240	300250	29
Atlas V 521/522	15080	154	10198.94	None	246	7206426	HTPB-RP-1	Developed	0.99	170	506392	34
Atlas V 531/532	17250	162	9402.90	None	274	8895708	HTPB-RP-1	Developed	0.99	155	511864	30
Atlas V 541/542	18960	171	8997.89	None	290	10584990	HTPB-RP-1	Developed	0.99	144	536216	28
Atlas V 551/552	20520	179	8723.20	None	284	12274272	HTPB-RP-1	Developed	0.99	137	603423	29
Zenit 2	13740	35	2547.31	None	311	7259400	Kerosene	Developed	0.83	143	340257	25
Zenit 2SLB	13920	50	3591.95	None	309.5	7259400	Kerosene	Developed	0.83	143	341906	25
Anane 5 ES(V)	19300	178	9222.80	None	293	11354702	none	Developed	0.89	179	705852	37
Angara A3	14500	95	6506.85	None	309.5	1922760	potentially RP-1	Developed	0.67	236	149454	10
Angera A5	24500	105	4285.71	None	309.5	1922760	potentially RP-1	Developed	0.67	236	149454	6
Angara A5/KVRB	24500	105	4285.71	None	309.5	1922760	potentially RP-1	Developed	0.67	236	149454	6

Launcher Backup Slides

So... How do we get this into space?

- Launcher

- Focus on In-Orbit Production:
 - Modular production
 - Additive manufacturing of trusses
 - Robotic assembly
 - Production of large mirrors
 - Large earth produced parts
- Integration (animation)

Conclusion

Q&A

公開

14.5

SOYUZ

ŤUDelft

On Earth vs. In-Orbit

Launching = limits on volume and mass

In-orbit construction:

- High packing efficiency
- No launch loads on structure
- > Large and light S/C

But... In-orbit production = complex!

EPS Backup Slides

Electric Power System

Electric Power System

EPS: BLOCK DIAGRAM

114

EPS: BLOCK DIAGRAM

EPS: LV SOURCE

EPS: LV SOURCE

LV Source Design Challenges:

- Solar Cells Output Low Voltage (mV range)
- Solar Cells Tend not to Operate at Max Power Point
- Conductor Skin Losses
- Eddy Current Losses

EPS: BLOCK DIAGRAM

EPS: SUBSYSTEM INTEGRATION

EPS: BLOCK DIAGRAM

EPS: LV-HV DC-DC Converter

EPS: EXTRA SLIDES

Transformer Design Challenges:

- Flux Leakage
- Hysteresis Losses
- Conductor Skin Losses
- Eddy Current Losses

EPS: EXTRA SLIDES

Transformer Design Challenges:

- Flux Leakage
- Hysteresis Losses
- Conductor Skin Losses
- Eddy Current Losses

Transformer Design Solutions:

- Toroidal
- Silicon Steel Alloy
- Transformer Stack
- Micro Laminations

EPS: BLOCK DIAGRAM

EPS: STATS

- High Power Density (172 kW/kg)
- High Efficiency (95%+)
- Compatible
- Modular

Subsystem	Electric power distribution [%]	Per Spacecraft [MW]	Total [MW]	
Propulsion	0.00	0.0019	0.037	
ADCS	0.00	0.0018	0.036	
Thermal Control	0.00	0	0	
TT&C	0.00	0.001	0.002	
Power Collection	0.00	0	0	
Power Storage	0.00	0.003	0.060	
EPSY	0.04	2.24	44.78	
Maintenance	0.00	0	0	
Structures	0.00	0	0	
Power Transmission	0.96	58.93	1178.67	
Total	1.00	61.18	1223.58	

Thermal Control Backup Slides

Secondary mirror heat pipes

Primary mirror heat pipes

'Knikkerbaan' heat pipes

Thermal Energy Storage Container

Thermal Control System Thermal Energy Storage

SPECTRE temperatures without thermal control measures

SPECTRE temperatures in full Sun with thermal control

	Allowable Temperatures		No Thermal Control		With Thermal Control	
Critical Components	Min T [K]	Max T [K]	Min T [K]	Max T [K]	Min T [K]	Max T [K]
Solar cells	-	300	114	600	200	297.5
Filters	-	500	114	603	290	301.5
Subsystem module	250	300	114	594	273	293

SPECTRE temperatures before and after thermal control is applied

Standard Heat Pipe operation

Loop Heat Pipe operation

High Emissivity Coating

Mirror Film

Heat Radiated away

Heat Pipe

Radiator operation

Thermal Energy Storage operation

Thermal Control Theory

Radiative Thermal Coupling

 $Q_r = \sigma \cdot \varepsilon \cdot \overline{A_1 \cdot F_{1 \to 2} \cdot (T_1^4 - \overline{T_2^4})}$

Conductive Thermal Coupling

 $Q_c = h_t \cdot A_c \cdot (T_1 - T_2)$

Component temperature due to heat

$$T = \frac{Q_r + Q_c + Q_{in}}{H_c} \cdot t$$

Thermal Control Design Option Tree

ADCS Backup Slides

ADCS: Actuators

Attitude Control:

- Control Moment Gyroscopes
- Stability & Control
- 9 CMGs per satellite

ADCS: Disturbances

Solar radiation pressure:

$$T_{s} = \frac{\Phi}{c} \cdot A_{s} \cdot (c_{p,s} - c_{m}) \cdot (1 + q) \cdot \cos(\varphi)$$
$$T_{s} = 0.0364 Nm$$

Magnetic disturbance torque:

$$T_m = D_m \cdot \frac{M_m}{R^3} \cdot \lambda_m$$
$$T_m = 2.08 \cdot 10^{-6} Nm$$

Safety factor of 1.25 to account for other smaller disturbances leads to: $T_{max} = 0.04555 Nm$

ADCS: Sensors

Attitude Determination:

- 3 Sun sensors
- 8 Earth sensors
- 4 Star trackers

Astrodynamics Backup Slides

Astrodynamics: ΔV Budget

Trajectory	ΔV [m/s]
Launch	7759
GTO	2442
GEO	1779
Station Keeping	47 x 32 years
Disposal	186
Contingency Factor	1.25
Total	17089

Astrodynamics: Trajectory

GEO rking Orbit

Astrodynamics: Cluster Flying

- 20 Spacecraft
- Orbit around GEO belt 'axis'
- 1 km separation

C&DH Backup Slides

Command and Data Handling System

Delft

Market, **Operations** and Contingencies **Backup Slides**

Economics: Profitability

Market: Fast developing Asian countries

Economics: Profitability

Cash Flow into SPECTRE

Continued Investment into

Monte Carlo Simulation

Monte Carlo Specifications

- Three Normal Distributions and one Logarithmic Distribution for Randomisation
- Mirror and Solar Cell Degradation
- Partial Mirror Failure, Partial Failure, Ultimate Failure and ADCS Failure
- Debris Impacts on Solar Cells and Mirrors
- Partial Mirror Repair, Partial Repair, ADCS Repair
- Integration of Eclipse Periods
- One Minute Resolution for 30 Years

Sensitivity Analysis

Sensitivity Analysis

Communication Operations

Maintenance Operations

Production Operations and Logistics

Delft

Post DSE Gantt Chart Simplified

		Year																																	
	2018		2019)		2020		2	021		2	022			2023			2024			2025			2026	;		20	027		2	028		2	029	
		Quarter																																	
	3 4	1	2 3	3 4	1	2 3	4	1 2	2 3	4	1 2	23	3 4	1	2 3	3 4	1	2 3	34	1	2 3	4	1	2	3 4	4 1	L 2	3	4	1 2	2 3	4	1 2	2 3	4
Detailed Definition																																			
Implement Stakeholder Feedback																																			
Continue Design of Solution																																			
Initiate Communications with Partners																																			
Confirm Test, Qualification and Set-Up																																			
Complete Design for Production Initiation																																			
Start-Up Production Master File																																			
Critical Design Review																																			
Component and Subsystem V&V																																			
Confirm V&V Means																																			
Produce Prototypes for Extensive V&V																																			
Perform V&V with Prototypes																						_													
Iterate Design and Prototypes if Needed																																			
Integrated Ground Testing & Qualification																																			
Integrate Prototypes into Small-Scale Product																																			
Test the Integrated Prototype																																			
Qualify System for Launch and Orbit																																			
Qualification Review																																			
Marketing																																			
Production																															_				
Acceptance Review																																			
Launching																																			
In-Orbit Production																																			
Operation										ſ																									

QFD Structure and Method

Risk Contingencies

- 14 Developed Contingency Plans that Encapsulate all Risks
 - Launcher Failure
 - Transport Failure
 - Schedule Delay
 - Maintenance Failures
 - In-Orbit Production Failure
 - Harsh Environment
 - +8 More

Risk Contingencies

- Launcher Failure
- Transport Failure
- Schedule Delay
- Maintenance Failures
- In-Orbit Production Failure
- Harsh Environment
- Unsatisfied Investors/Workforce
- Maintenance Resupply Failure

- Improper System Design
- Production/Integration Delays
- Payload Failure
- Improper Design/Production On-Earth
- Improper Design/Production In-Orbit
- Stakeholder Requirement Failure

Volume Backup Slides

Subsystems Module

Subsystems Module

Subsystem Components	Total Mass [kg]	Volume [m ³]
Xenon propellant tank	1500	1.012
Thermal Energy Storage Container	2000	2
9 Control Moment Gyros	2448	1.125
8 Power Converters	13	1
3 Batteries	193	0.035
Electrical Wiring	13	0.18
8 Transmitters	10.4	0.000876
8 Receivers	10.4	0.000876
Flight Computer	4	0.016
Data Cables	2.5	0.001
Total Subsystem Module	6194.3	5.37

Propulsion Backup Slides

Propulsion: Thruster Specifications

5x Busek BIT-7 Ion Thruster

Parameter	Value
Thrust	11 mN
Isp	3300 s
Power	460 W

Propulsion: Thruster Specifications

Xenon Propellant Tank

Parameter	Value
Prop. mass	1450 kg
Volume	1.01 m ³
Pressure	250 bar

Requirements Backup Slides

REQUIREMENTS: DRIVING

- M-ST-S-ECON-000- The total cost of constructing such a system shall be less than 1.5 billion Euros (FY2018), including manufacturing, launching and assembling adjusted for inflation.
- M-ST-S-ECON-001- The system shall be operational before 2030.
- D-ST-S-ECON-002- The break-even point will occur before the end of 30 years in service, adjusted for inflation.
- M-SY-S-ECON-000- The system shall be operational for at least 30 years in space.
- D-SY-S-ECON-000- The mass of the space segment should be no more than 1000 tonnes.
- M-SY-P-POCO-000- The space-based solar collection system shall produce at least 1 Gigawatt of electrical power at end of life

REQUIREMENTS: DRIVING

- Priority: Mandatory, Desirable and Optional
- Subdivisions include: Performance, Sustainability and Life
- Performance: Subsystems
- Sustainability: Environmental, Economic and Social
- Life: Production, Operations and Disposal

REQUIREMENTS: DRIVING

- Priority: Mandatory, Desirable and Optional
- Subdivisions include: Performance, Sustainability and Life
- Performance: Subsystems
- Sustainability: Environmental, Economic and Social
- Life: Production, Operations and Disposal

REQUIREMENTS: TREE

ŤUDelft

Example: M-SY-S-ECON-001

REQUIREMENTS: TREE

ŤUDelft

Example: M-SY-S-ECON-001

Risk Backup Slides

Technical Risk Assessment

Technical Risk Mitigation

Structure Backup Slides

Primary structure with modelled masses

Primary structure critical load case

Spinning spacecraft	0.052 rad/s
Maximum pitch rate	0.0002 rad/s
Ion thruster	0.011 N
Req. D-SY-P-STRU-001	<0.04 degs deflection

Primary Structure deformation before iteration

Primary Structure deformation after iteration

Axial forces in Primary Structure

Bending forces in Primary Structure

Shear forces in Primary Structure

Torsional forces in Primary Structure

Spacecraft Structure – Space Web

UDelft

Load case for one 'clock hand'			
Spinning spacecraft	0.052 rad/s		
Mirror mass	73.3 g		
Web crawler robot	180 kg		
mass			
Safety factor	4		
Req. D-SY-P-STRU-001	<0.04 degs deflection		

Space web critical load case

Spacecraft Structure – Space Web

Space web deformation

Spacecraft Structure

Spacecraft structure	Mass [kg]
Primary structure	852.44
Primary mirror space web	87.5
Secondary mirror space web	2.5
Total structure	942.44

Spacecraft structure results

TT&C Backup Slides

TT&C: Architecture

TT&C: Link Budget

Uplink Budget			
Parameter	Value	Unit	
Tx Power	26.98970004	dBW	
Tx Antenna			
Loss	-0.9691001301	dB	
Tx Gain	44.33783033	dB	
Path Losses	0.02999280216	dB	
Rx Antenna Loss	-0.7058107429	dB	
Rx Antenna Gain	24.33783033		
Space Loss	-190.0496664	dB	
Pointing Loss	2.05744.0000	-10	
IX	-3.057414966	ав	
Pointing Loss Rx	- 0.00764353741 5	dB	
Coding Gain	4	dB	
Data Rate	-36.98970004	dB	
System Temperature	-24.98310554	dB	
Boltzmann	228.6012091	dB	
SNR	71.53412127	dB	
Link Margin	40.53412127	dB	

Downlink Budget			
Parameter	Value	Unit	
Tx Power (RF Output)	10	dBW	
Tx Antenna Loss	- 0.9691001301	dB	
Tx Gain	36.29695501	dB	
Path Losses	-0.3	dB	
Rx Antenna Loss	- 0.9691001301	dB	
Rx Antenna Gain	56.29669884		
Space Loss	-202.0087911	dB	
Pointing Loss Tx	-1.92	dB	
Pointing Loss Rx	-0.12	dB	
Reception Feeder Loss	- 0.9691001301	dB	
Data Rate	-78.4509804	dB	
System Temperature	-24.98310554	dB	
Coding Gain	4	dB	
Boltzmann	228.6012091	dB	
SNR	24.50468556	dB	
Link Margin	14.19097706	dB	

V&V Backup Slides

Verification & Validation

Requirement Validation

- Verifiable
- Achievable
- Logical
- Integral
- Definitive

Model Verification

- Analytical Calculations
- Unit Tests
- Inspection

Product V&V: Stages

Qualification

- Assembly, Integration and Test
 - Electrical integration
 - Mechanical integration
 - Hardware-software integration
- Production testing

Acceptance

- Workmanship errors
- Vacuum testing (including thermal)

Product V&V: Stages

Pre-Flight

• Vibration testing

In-Orbit

- Production and Assembly in Space
- Electrical Power System
- Transmission System
- Prototype Test in LEO

