

Space Power in the Dark (... and without lawyers)

Chuck Finley NASA Ames Research Center

Making a Case for Beamed Power

- Candidate Vision for Space Solar Power
- Space Solar State-of-the-Art
- Cost of the Sun -- Bounding Constraints to Space Solar Power
- Alternate Architecture for Beamed Space Power
- Walking Away From and Back To Space Nuclear

Making a Case for Beamed Power Does it make sense?

"Power can be, and at no distant date will be, transmitted without wires, for all commercial uses, such as the lighting of homes and the driving of aeroplanes. In years to come wireless lights will be as common on the farms as ordinary electric lights are nowadays in our cities."

(Nikola Tesla, The American Magazine, April 1921)

Intra-domain

- Earth-to-Earth
- Space-to-Space
- Moon-to-Moon

Cross-domain

- Space-to-Moon
- Space-to-Earth

Source: NASA

Many parts of the world remain in the dark.

Candidate Vision for Space Solar Power

Recent SPS Activities in China

DISTRIBUTION STATEMENT A: Approved for public release

Nxinbin Hou, Li Wang; Qian Xuesen Laboratory of Space Technology

Efficiency Chain s Sun n1 Solar energy collection and conversion n2 Power transmission and management

Microwave power η3 conversion and emitting Microwave power η_4 transmission Microwave power ηs receiving and conversion Electric power η₆ regulation Grid P_E

CAST

System Efficiency

Factors	Efficiency	System efficiency		
Solar energy collection and conversion (0.29)				
Solar cell	0.40	0.4		
Error of Sun-pointing	0.99	0.396		
Gap of solar cells	0.85	0.336		
Angle of sunlight	0.958	0.322		
Space environment effect(EOL)	0.90	0.290		
Power transmission and management (0.849)				
Voltage conversion in solar array	0.95	0.276		
Transmission	0.95	0.262		
Voltage conversion in antenna	0.95	0.249		
Consumed by service devices	0.99	0.246		
Microwave power conversion and emitting (0.7125)				
Microwave generator	0.75	0.185		
Microwave regulation	0.95	0.176		
Microwave power transmission				
Microwave transmission	0.095	0.0217		
Microwave power receiving and conversion (0.72)				
Receiving antenna	0.9	0.0167		
Rectifier circuits	0.8	0.0133		
Electric power regulation (0.97)				
Electric power collection	0.98	0.0130		
Voltage conversion	0.99	0.0129		

2nd SSPS Workshop 2019, Korea

6/3/2019

Recent SPS Activities in China

Nxinbin Hou, Li Wang; Qian Xuesen Laboratory of Space Technology

Orbit	GEO	Orbit	GEO
Delivered power	~1MW	Delivered power	~1GW
Clas		Efficiency	~13%
Size	$^{150m(X) \times 820m(Y) \times 100m(Z)}$	Total mass	~10000t
Total mass	~300t	Solar cell	This film Gala
Solar cell	Thin-film GaAs	Efficiency	~40%
Efficiency	~40%	Area of solar array	OKIT
Cutericity		Output power	~2.4GW
Output power	~24MW	Voltage of solar array modules	~5001/
Voltage of solar array modules	5004	Mass	~2000t
Mass	~60t	Frequency of microwave	5.8GHz
Frequency of microwave	5 RCH+	Efficiency	
Frequency of microwave		Diameter of transmitting antenna	1000m
Diameter of transmitting antenna	~150m	Number of antenna modules	128000
Beam precision	0.003*	Transmitting power of an antenna module	12.5 kW
Diameter of receiving antenna	Skm	Mass	40001
Mass	~100t	Diameter of receiving antenna	Skm
Voltage of main cable	5000 V	Style	Mix of distributed and centralized
Number of rotary joints	24	Voltage of main cable	20 kV
Mass	~65t	Voltage of solar sub-arrays	5000 V
Madula	Deployed truce	Number of rotary joints	100
Module	Deployed truss	Mass	2500t
Mass	~40t	Module	Deployed truss
Thrusters	20kW electric thruster	Mass	1200t
Mass	~20t	Thrusters	1N electric thruster
Mass of thermal Management	*10+	Mass	100t
wass of thermal wanagement	100	Mass of thermal Management	150t
Mass of ISRM	~5t	Mass of ISRM	50t
Continuous to	ransmission	Continuous t	ransmission

Recent SPS Activities in China

Nxinbin Hou, Li Wang; Qian Xuesen Laboratory of Space Technology

Configuration(1GW)

Space Solar State-of-the Art

Dr Kyle Montgomery, Advanced Space Power, AFRL/RV

Where We Have Been – Space Solar Cells

Shift Towards Enabling New Capabilities

DISTRIBUTION STATEMENT A: Approved for public release

Credit: https://www.wired.com/2014/03/space-solar/

Credit: http://environment.umn.edu/discovery/game-changing-research/

Credit: https://spacenews.com/op-ed-the-move-from-survivability-to-resilience/

Making a Case for Beamed Power Does it make sense?

"Power can be, and at no distant date will be, transmitted without wires, for all commercial uses, such as the lighting of homes and the driving of aeroplanes. In years to come wireless lights will be as common on the farms as ordinary electric lights are nowadays in our cities."

(Nikola Tesla, The American Magazine, April 1921)

Ben Franklin's famous kite experiment

Intra-domain

- Earth-to-Earth
- Space-to-Space
- Moon-to-Moon

Cross-domain

- Space-to-Moon
- Space-to-Earth

Alternate Architecture for Beamed Space Power

1MW Configuration

The US Military Wants Tiny Road Mobile Nuclear Reactors

NASA

6/3/2019

Walking Away From Space Nuclear Jeff Waksman, Strategic Capabilities Office

Portable Nuclear Power: An Old Idea

- The U.S. Army Nuclear Power Program ran from 1954 through 1977.
 - Eight reactors were constructed (five were portable), each between 1-10 MWe, of various designs and for various purposes.
- The first U.S. nuclear reactor to be connected to an electrical grid, in 1957, was an Army reactor (SM-1).
- As some of the earliest nuclear reactors ever built, they were technologically difficult to operate, unreliable, and too expensive relative to abundant fossil fuel alternatives.

ML-1 US Army reactor, 1958, Arco, Idaho

Walking Back To Space Nuclear – Project Pele Jeff Waksman, Strategic Capabilities Office

Small Nuclear Reactors Are Already Here

- 2019 NDAA requires a DoE/DOD plan to achieve the operation of a small nuclear reactor at a DOD installation no later than 2027.
- USD(R&E) Michael Griffin has assigned the task of developing a mobile nuclear reactor to the Strategic Capabilities Office (SCO).

Walking Back To Space Nuclear -- Kilopower Max Chaiken, NASA Glenn Research Center

From the NASA FY2020 Budget Proposal

The Lunar Surface Innovation Initiative activities will be implemented through a combination of inhouse activities, competitive programs, and public-private partnerships. The Initiative will bring together the full range of stakeholders, including entrepreneurs, academia, small businesses, industry and the NASA workforce to catalyze technology development. For example, this Initiative will develop and integrate systems used for in situ resource utilization and processing into mission consumables, including oxygen, water, and hydrogen. This capability will reduce mission mass, cost, and risk of human exploration, and increase independence from the Earth's resources. NASA's Kilopower technology will transition into a demonstration mission - building on the 2018 demonstration of a small, lightweight nuclear fission power system that would permit tong duration crewed missions on the surface of the Moon. Furthermore, the initiative will

jumpstart fuel cell development, space weather monitoring, and improve systems and components to allow survival and operation through the cold lunar night.

Space Nuclear State of the Art

SCO Project Pele

(TRISO) particle

- Design \rightarrow Terrestrial (2023) \rightarrow Space
- $1 \rightarrow 10$ MWe
- <40tons (primarily shielding) \rightarrow ??
- HEU → HALEU TRISO fuel
- Power in 2023

- Ground demo 2018 → Space demo ??
- 1 → 10kWe
- EM electronics \rightarrow Space-qualified
- HEU U235 fuel \rightarrow ??
- Earth power in 2018

DISCUSSION

Hybrid High Ground Lunar/Cislunar Domain Awareness/Control

CHUCK FINLEY, SPACE EXPERIMENTS AND PROGRAMS PORTFOLIO LEAD

AFRL/RVEP, 11 June 2019

Overall Briefing is DISTRIBUTION A. Approved for public release: distribution unlimited.

Topics

- Recipe for a contested domain
- Hybrid Architecture
- Prepping the "battlefield"
- Opportunistic Layer
- Intentional/Conditional Layers

Recipe for a Contested Domain

THE AIR FORCE RESEARCH LABORATORY

- First explored > 12,000 years ago
- First "settled" > 700 years ago
- 1850 SITREP

AFRL

 \sum

- Increasingly acknowledged value
- Raw
- Contested
- How did the US achieve "control" over its adversaries?
 - Superior awareness
 - Superior communications, "precision" navigation and timing
 - Superior logistics
 - Control of power generation and distribution

History of the Moon

- "Launched" from Earth > 4 billion years ago
- "Spaceship Moon" contains the following harvestable resources:
 - Real estate, sub-surface shelter, gravity, water, oxygen, solar energy, no atmospheric interference or drag, TBD "other"
 - Gravitational proximity to Earth GEO
 - "Hiding places" on tidally locked far side and L2

• 2019 SITREP

AFRL

- Increasingly acknowledged value
 - Civil
 - Commercial
- Raw
- Contested?

Hybrid Architecture

THE AIR FORCE RESEARCH LABORATORY

Layers of the Hybrid Architecture

It is critical we know end-state deployment strategy as it will drive the requirements of the system or technology we develop

Pillars of Distributed Satellite Systems

Historical Objective: Strategically Persistent Space Effects (ISR/Missile Warning/PNT/Comm/Weather/SSA)

Objective: Exquisite capability in all space mission areas in all Areas of Interest (AOIs) against all adversaries all the time.

Modern Threshold: "Fight Through Solutions for a Contested Domain"

Objective: Sequisite capability is all space mission areas the sequences (AOIs) against all seversaries all the time
Contested:
1. Space Systems
2. Space Signals
3. Space Military Effectiveness
4. Space Domain

Threshold: Fight-through resilience of critical space effects in critical AOIs for critical time periods despite contesting adversaries.

Prepping the "battlefield"

Hybrid High Ground -- 1850 American West "Do Over"

- How should the US achieve "control" over its Domain?
 - Superior awareness
 - Surface or overhead or cross-domain sensors?
 - Remote or proximity ops systems?
 - South pole or far side or L2 or L1 or . . . ?
 - Superior communications, "precision" navigation and timing
 - Surface or overhead or cross-domain sensors?
 - RF or optical sensors?
 - Superior logistics
 - Digital or material?
 - Control of power generation and distribution
 - Solar or nuclear source?
 - Wires or wireless distribution?

BACKUP

THE AIR FORCE RESEARCH LABORATORY

Opportunistic Layer

THE AIR FORCE RESEARCH LABORATORY

AFRL

NASA Commercial Lunar Payload Services (CLPS)

Phase 1: Fast, Low-Cost, Commercial- Enabled Missions	Phase 2: Pilot Scale Demonstration	Phase 3: Long-Term Contracts
 Partner with industry to develop and demonstrate capabilities to enable an evolvable lunar infrastructure, including: Lunar cargo delivery, mobile power stations, communication towers and satellites, lunar surface rovers, etc Obtain ground truth data at several lunar sites: Identify resources and hazards Determine economic viability for resource extraction. 	 Demonstrate multipurpose infrastructure services on a pilot-scale to support future NASA crew missions and commercial activities, such as, lunar mining. Develop a pilot-scale ISRU plant to extract water and produce up to 1 metric ton of propellant. Evaluate feasibility and economics of scaling up production to full scale. 	 NASA awards long-term contracts for infrastructure services, such as, lunar cargo delivery and power/comm services to support human missions. NASA may also award long-term contracts for full-scale resource extraction and/or delivery of resources to cis-lunar destinations.

NASA Space Communications and Navigation (SCaN) Program

NASA Small Sample Return

Amazon Digital and Material Logistics Chain

Tactical Power Generation

SCO Project Pele

Tristructural isotropic (TRISO) particle

- Design \rightarrow Terrestrial (2023) \rightarrow Space
- $1 \rightarrow 10$ MWe
- <40tons (primarily shielding) \rightarrow ??
- HEU → HALEU TRISO fuel
- Power in 2023

- Ground demo 2018 → Space demo ??
- 1 → 10kWe
- EM electronics \rightarrow Space-qualified

NASA Kilopower

- HEU U235 fuel $\rightarrow ??$
- Earth power in 2018