FINANCING STRATEGY FOR PHASE 1 OF THE SPG ARCHITECTURE

• AGENDA

ASSESSMENT

SPG ARCHITECTURE

FINANCIAL VIABILITY

FINANCIAL STRATEGY

LOOKING FORWARD

FINANCIAL VIABILITY

SPG ARCHITECTURE

- Space power grid is a constellation of relay satellites in LEO
- There is no power generation in space in phase 1
- Power is transmitted from one terrestrial station to another
- Similar to communication sats
- Aims to stabilise the RE grid

(Dessanti et al., 2021) downlink

ADVANTAGES OF SPG

- Scalable and profitable
- Flexible operations
- Investor friendly
- frequency (200 GHz)
- Provides grid stabilisation

(Dessanti et al., 2021)

• Smaller due to lower orbit (2000 km) and high

Installed cost per watt : moderate (4 cents/ KWH)

SIGNIFICANCE OF THIS STUDY

Frazer Nash

- Govt consultancy report
- Policy proposal
- Public spending throughout all phases of development

LBST consortium

- GEO and MEO architecture
- Large investment spending
- Phase 1 target • \$10529M for 5GW power generation

This study

- LEO architecture
- Private spending strategy
- Power relay

FINANCIAL VIABILITY

- Useful revenue with min 36 satellites and 12 plants.
- 200GHz transmission, and with a 30% end-to-end transmission of the power
- Break even at year 17, R&D first 6 years
- With 36 sats **2.16 GW** power transmitted
- Total non recurring cost:
 \$2719M
- Economies of scale will reduce costs

Parameter	Value
Satellite power level	60MW
Satellite mass	4510 kg
Launch cost to 2000 km high circular orbit	\$19.8M
Development cost for system	\$330M
Production cost for 1st 36 sats	\$1370M
Ground facilities development cost	\$1000M
Per sat annual mission operations and data analysis cost	\$2.75M
Ground station power level	55MW
Cost of production of power	4 cents per KWH
End to end efficiency of beaming power grid	30%
Sales price at delivery point	30 cents per KWH
Gross margin	5 cents per KWH
SPG share of gross margin	4.5 cents per KWH

(Komerath, 2009)

SPG LIFE CYCLE

- High capital cost but investment payback
- Communication satellite has a lifespan of 15 years
- Net positive financial return for 4 years after the deployment of the constellation.
- Enough revenue to begin phase 2 which are power generation satellites
- De orbit of Satellites of phase 1 satellites

FINANCIAL Strategy

COMPARISON WITH OTHER MARKETS

Nuclear energy

- High capital cost & long term rate of return
- Scalable model and flexible model (able to either act as relay satellite through transmit Or power generation)
- Global energy market
- Linked to terrestrial RE market

Terrestrial renewable energy storage

- High cost of transportation
- Both industries are linked to terrestrial RE providers
- So look for parallels in financing strategy

Premium energy markets

- Disaster prone regions
- Remote regions
- military bases
- Countries willing to collaborate

(Financing Nuclear Energy - World Nuclear Association, 2020) NUCLEAR ENERGY VS SPS

- Cooperative corporate finance
- Mankala principle A cooperative model for large scale energy investments in Finland
- Mankala companies (limited liability companies): each owner proportional to their share of equity has to purchase energy from the company on a cost-price basis instead of dividends.
- Shareholders sell their share of electricity further or use it in their own processes
- The economic result of generating electricity is part of shareholder's own profit/loss
- Applicable because in global market multiple energy producers and investors
- Consumers benefit as electricity prices stabilise
- Nascent tech financed with greater equity than debt

TERRESTRIAL ENERGY STORAGE

- The global energy storage market was valued at USD 10.37 billion in **2020**, and it is expected to reach **USD 37.06 billion** by 2027, registering a CAGR of 19.9% during the forecast period of 2022-2027.
- SPG provides profit through power export stabilising both electric grids
- Partner with terrestrial RE providers
- Hybrid bond model pools projects together in order to reduce market and credit risks faced by investors.
- **CPPA's** long-term contract under which a business agrees to purchase electricity directly from an energy generator.

(Miller and Carriveau, 2018)

PREMIUM ENERGY MARKETS

- The national space security office: #1 requirement for generating industry interest and investment in developing the initial operational SBSP systems is acquiring an anchor tenant customer, or customers, willing to sign contracts for high-value/premium SBSP services.
- Thus premium energy markets: disaster prone regions, remote regions, remote military bases
- Additionally: collaborating nations (industrial energy supply)
- Conducive global political and regulatory framework

(National Security Space Office, 2007)

LOOKING FORWARD

- Financial viability and financing strategy have been suggested
- Focused only on private investments, need to focus on the role of govts and customer end of the spectrum
- The role of govts in aiding the project through incentives and conducive policies
- Limitations of this architecture and the recommended financing strategy

THANK YOU

BIBLIOGRAPHY

Dessanti, B., Picon, N., Rios, C., Shah, S. and Komerath, N., 2021. A US-India Power Exchange Towards a Space Power Grid. Online Journal of Space Communication, [online] 10(17). Available at: https://ohioopen.library.ohio.edu/spacejournal/vol10/iss17/14

Frazer-Nash Consultancy Ltd, 2021. "Space Based Solar Power: De-risking the pathway to Net Zero". [online] Open Government Licence v3.0. 25 pages. Available at: https://space.nss.org/wp-content/uploads/space-based-solar-power-derisking-pathway-to-net-zero-2021.pdf

Komerath, N. (2009) 'The Space Power Grid: Synergy Between Space, Energy and Security Policies'.

LBST Consortium, 2005. "earth and space-based power generation systems: a comparison study". [online] LBST Consortium. 439 pages. Available at: https://www.esa.int/gsp/ACT/doc/POW/GSP-RPT-SPS-0503%20LBST%20Final%20Report%20Space%20Earth%20Solar%20Comparison%20Study%20050318%20s.pdf

Miller, L. and Carriveau, R. (2018) 'A review of energy storage financing—Learning from and partnering with the renewable energy industry', Journal of Energy Storage, 19, pp. 311–319. doi:https://doi.org/10.1016/j.est.2018.08.007.

National Security Space Office, 2007. Space-Based Solar Power As an Opportunity for Strategic Security. Phase 0 Architecture Feasibility Study. [online] National Security Space Office. Available at: https://space.nss.org/wp-content/uploads/Space-Based-Solar-Power-Opportunity-for-Strategic-Security- assessment.pdf>

World-nuclear.org. 2020. Financing Nuclear Energy - World Nuclear Association. [online] Available at: https://world-nuclear.org/information- library/economic-aspects/financing-nuclear-energy.aspx> [Accessed 25 May 2022].