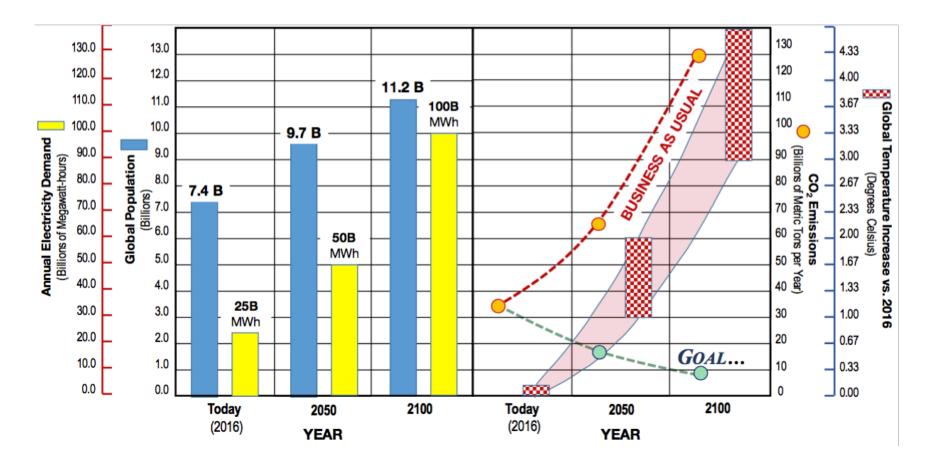
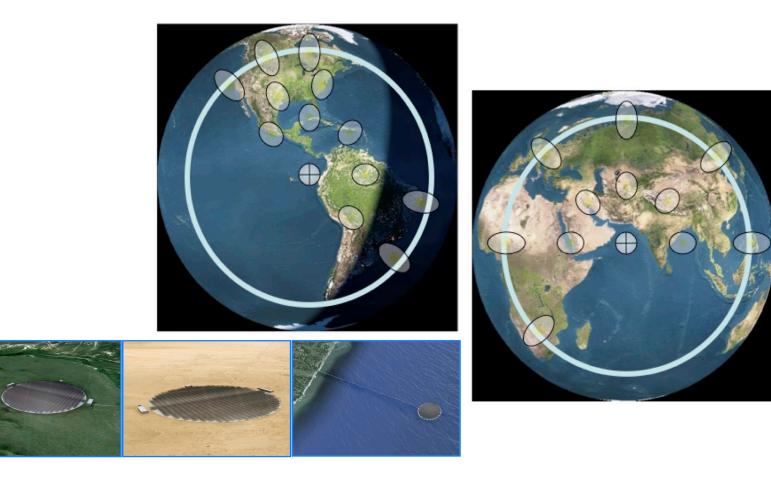
A Path Forward for Space Solar Power SPS-ALPHA Demonstrations to Operations

John C. Mankins Founder and President

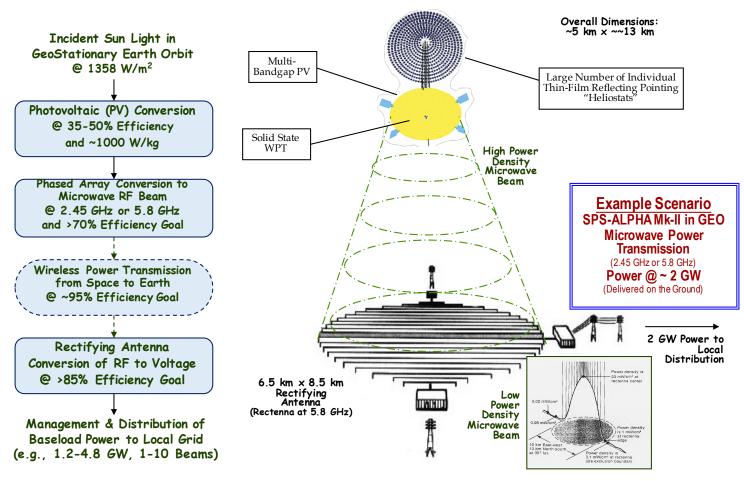


24-28 May 2017 International Space Development Conference (ISDC 2017)

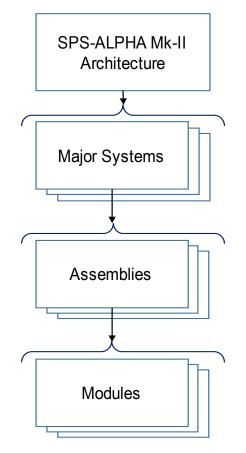
St. Louis , Missouri USA



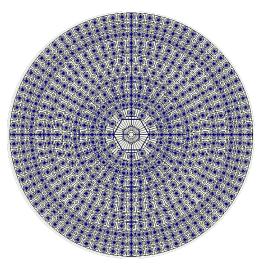
Why do we Need New & Sustainable Energy Sources...?



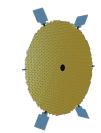
The Vision of Space Solar Power Affordable / Dispatchable Solar Energy 365-24-7



SPS-ALPHA Mk-II Overview


SPS-ALPHA Mk-II Overview Architectural Approach

- At the highest Level, the full Architecture, comprising the SPS Platform, Ground Systems, Supporting Infrastructure, etc.
- At the 2nd Level, the Major Systems within the Architecture
 - Within the Platform, comprising the Reflector Array, etc.
 - On the Ground, including the Rectenna, etc.
 - In the Transportation Infrastructure, including the Launch Vehicle, etc.
- At the 3rd Level, the Assemblies within each Major System
 - Including the Reflector Array Assemblies, comprising interconnects of two types, truss structures, reflector deployment modules, etc.
- At the 4th Level, the various modules that comprise the SPS-ALPHA Mark-II Architecture



SPS-ALPHA Mk-II Overview Concept Details

TOP VIEW Max Diameter < 6 km

 Stepped Cylinders" Conical Structural System
 Array of Several 1000s of Thin-Film Heliostats (Each @ ~1900 m²)
 Oversized Sail Array to use Light Pressure for Station-Keeping (Partial) SIDE VIEW Total Length ~ 13 km Reflectors / Reflector Array / Backbone sized to Provide Specific Concentration (~3:1) Uniformity of Illumination (<3%) Gravity Gradient Stabilized (With Artificial Gravity at ISAAC Facility at "Top" of Structural Backbone) Truss-Structure Connecting Heliostat Array and PV-WPT Array Docking / Construction / Servicing Station at Far-End from PV-WPT Array "Trim" Sails use Light Pressure for Station-Keeping (Partial) LEO-GEO SEP OTVs "Double" as On-Board Propulsion (Post Assembly)

▦

BOTTOM PERSPECTIVE Diameter ~ 1.7 km

Diameter ~ 1.7 km Hyper-modular PV+WPT Array)

GROUND RECEIVER Diameter ~ 6 km Local Modular Energy Storage (up to ~2.5 GWh)

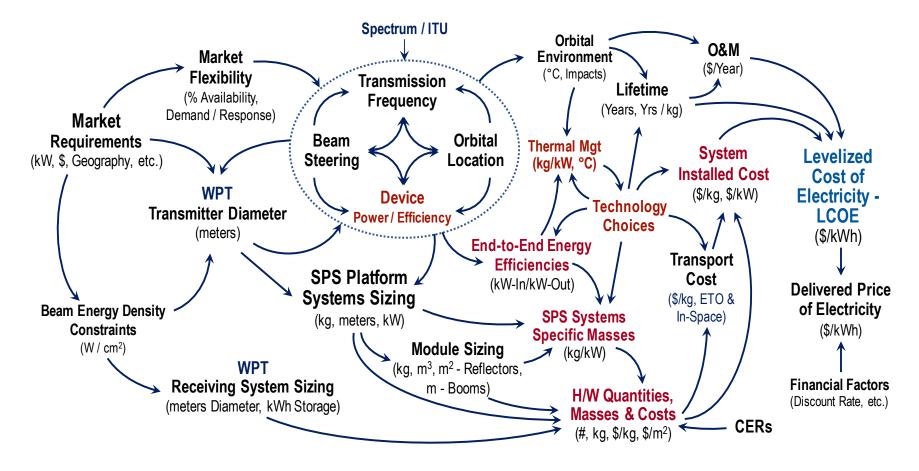
SPS-ALPHA Mk-II Overview Architecture Elements

1. SPS-ALPHA Mark-II Platform Systems (M.1)	2.0 Ground Receiver Systems (M.2)
 Inter-connect Modules M.1.1) Inter-connect - Type 1 (M.1.1.1) Inter-connect - Type 2 (M.1.1.2) SPS Bus Module (M.1.2) SPS Frame Modules M.1.3) Frame - Type 1 (Long; M.1.3.1) 	 M.2.1 Rectenna Antenna (M.2.1) Pilot Signal Transmitter (M.2.2) Range Safety & Control (M.2.3) Energy Storage Systems (M.2.4) Grid Interfaces (M.2.5)
• Frame - Type 2 (Short; M.1.3.2)	3.0 Launch Systems (M.3)
 Wireless Power Transmitter Module (M.1.4) Solar Power Generation Module (M.1.5) Thin-Film Heliostat: Reflector & Deployer Module (M.1.6) Robotic Arm Manipulator System Module (M.1.7) 	 Launch Vehicle (M.3.1) Payload Support & Packaging (M.3.2) Transportation Ground Infrastructure (M.3.3) Transportation Mission Control & Communications (M.3.4)
Propulsion Module (M.1.8)WiFi Router Module (M.1.9)	4.0 In-Space Transportation Systems (M.4)
 External Communications Module (M.1.10) Autonomous Rendezvous & Docking (AR&D) System Module (M.1.11) "Kernel" Core Module (M.1.12) 	 Orbital Transfer Power Systems (M.4.1) Orbital Transfer Thermal Systems (M.4.2) Orbital Transfer Ground Infrastructure (M.4.3)
	5.0 SPS Mission Control Center (M.5)

SPS-ALPHA Mk-II Overview **MANKINS** Architecture Elements / Space Segments

1.0 Power Conversion Array Assembly (A.1)	3.0 Platform Backbone Structure Assy (A.3)	5.0 SPS On-Board Operations Assy (5.6)
 Inter-connect Modules M.1.1) Inter-connect - Type 1 (M.1.1.1) Inter-connect - Type 2 (M.1.1.2) SPS Bus Module (M.1.2) Wireless Power Transmitter Module (M.1.4) Solar Power Generation Module (M.1.5) WiFi Router Module (M.1.9) External Communications Module (M.1.10) 	 Inter-connect Modules M.1.1) Inter-connect - Type 1 (M.1.1.1) Inter-connect - Type 2 (M.1.1.2) SPS Bus Module (M.1.2) SPS Frame Module M.1.3) Frame - Type 1 (Long; M.1.3.1) Frame - Type 2 (Short; M.1.3.2) 	 Inter-connect Modules M.1.1) Inter-connect - Type 1 (M.1.1.1) Inter-connect - Type 2 (M.1.1.2) SPS Bus Module (M.1.2) SPS Frame Module M.1.3) Frame - Type 1 (Long; M.1.3.1) Frame - Type 2 (Short; M.1.3.2) Solar Power Generation Module (M.1.5)
2.0 Primary Reflector Array Assembly (A.2)	4.0 SPS Orbital Operations Assembly (A.4)	Robotic Arm Manipulator System
 Inter-connect Modules M.1.1) Inter-connect - Type 1 (M.1.1.1) Inter-connect - Type 2 (M.1.1.2) SPS Bus Module (M.1.2) 	 Inter-connect Modules M.1.1) Inter-connect - Type 1 (M.1.1.1) SPS Bus Module (M.1.2) Solar Power Generation Module 	 Module (M.1.7) WiFi Router Module (M.1.9) Orbital Transfer Ground Infrastructure (M.4.3)
 SPS Frame Module M.1.3) o Frame - Type 1 (Long; M.1.3.1) 	(M.1.5)	6.0 SPS Kernel Assembly (A.6)
 Frame - Type 1 (Long, M.1.0.1) Frame - Type 2 (Short; M.1.3.2) Thin-Film Heliostat: Reflector & Deployer Module (M.1.6) 	 Propulsion Module (M.1.8) WiFi Router Module (M.1.9) External Communications Module (M.1.10) Autonomous Rendezvous & Docking (AR&D) System Module (M.1.11) 	 "Kernel" Core Module (M.1.12) Autonomous Rendezvous & Docking (AR&D) System Module (M.1.11) Orbital Transfer Ground Infrastructure (M.4.3)

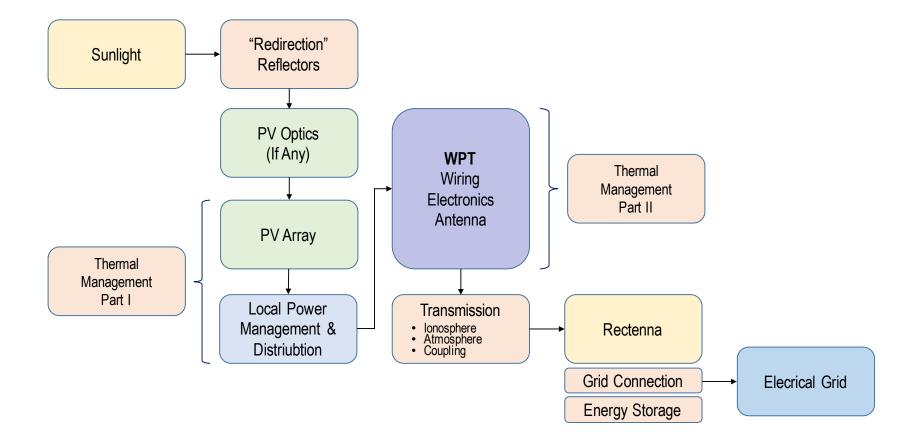
SPS-ALPHA Mk-II Overview Summary Characteristics


LCOE	\$0.0289	\$ / kW-hr	Installed Cost	<u>\$11.4483</u>	Billion, \$	Economic Lifetime	30	years
COST/Watt	<u>\$5.50</u>	\$ per Watt	SPS Platform Mass	<u>9,192</u>	МТ	Total Energy	547,322	GW-hrs
Power Delivered	<u>2,081.23</u>	MW	SPS Cost per kg	\$289		Energy to Deploy	365,524,963	kW-hours

- Typical analysis results...
 - ✓ Power delivered > 2 GW
 - \checkmark Mass in GEO at ~ 9200 MT @ ~\$11.4B
 - ✓ Cost of Electricity ~3 ¢ kWh, with ETO @ \$600 / kg
 - ✓ Economic Lifetime @ 30 years (assumed)
 - With various "moderate" advancement assumptions for key performance parameters / technologies

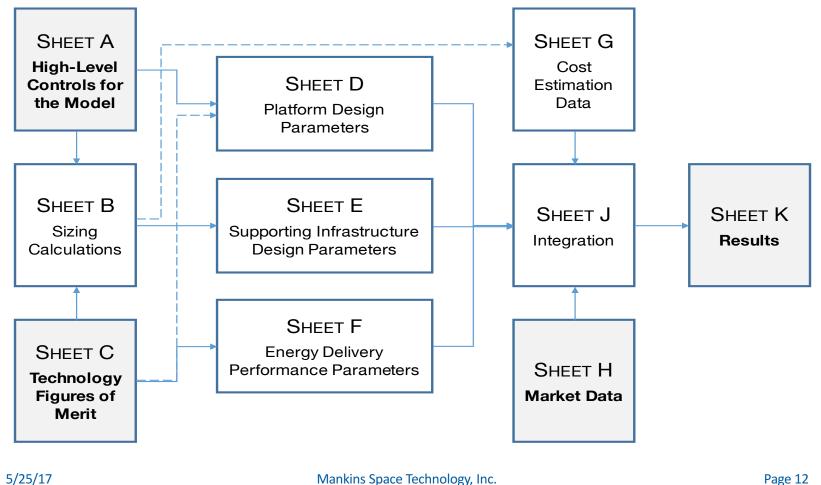
Sunlight @ 1 AU	1,358	Watts/m^2
Reflector - Tailored Efficiency	90.0%	Percent
PV Efficiency	<u>45.0%</u>	Percent
WPT Transmitter Efficiency	<u>70.0%</u>	Percent
Atmospheric Absorption	1.0%	Percent
Receiver "Interception" of Beam	96.0%	Percent
WPT Receiver Effiency	<u>87.0%</u>	Percent

Modeling SPS-ALPHA Mark-II Interrelationships Among KPPs

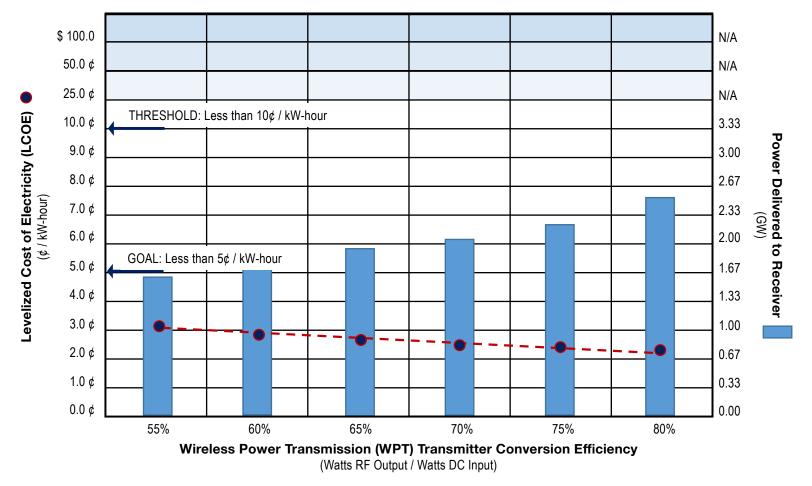


Mankins Space Technology, Inc.

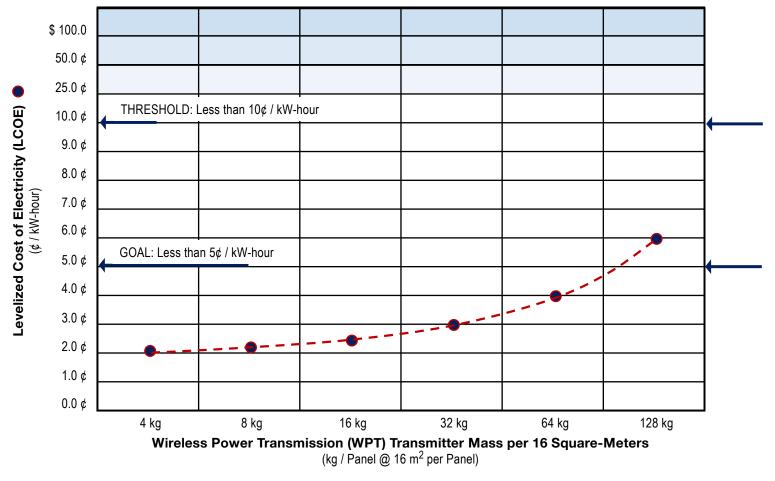
5/25/17



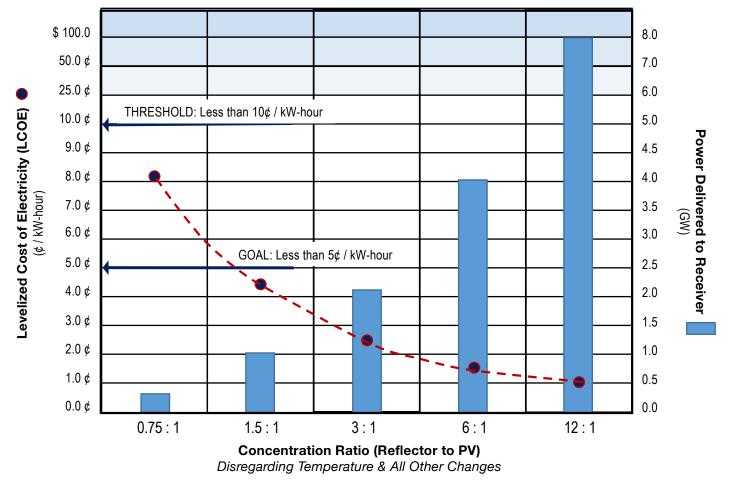
Modeling SPS-ALPHA Mark-II End-to-End Energy Analysis



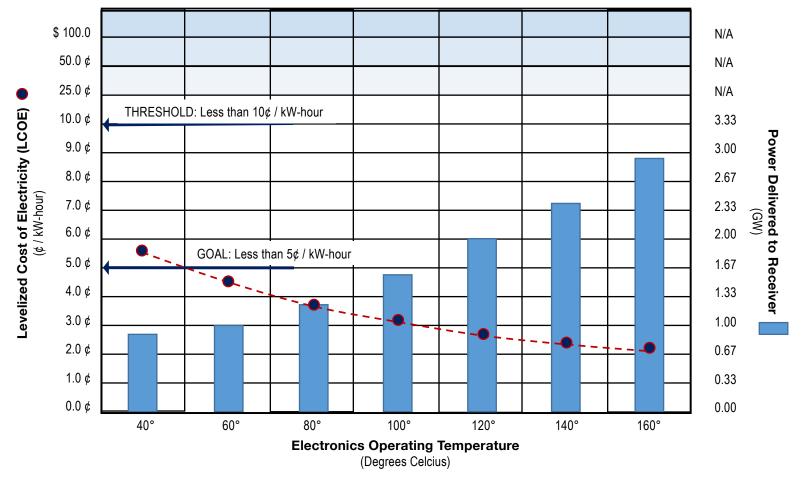
SPS-ALPHA Mark-II Modeling Excel-Based Modeling Approach (Overview)


SPS-ALPHA Mark-II Modeling Results System Results as a Function of WPT Efficiency

5/25/17

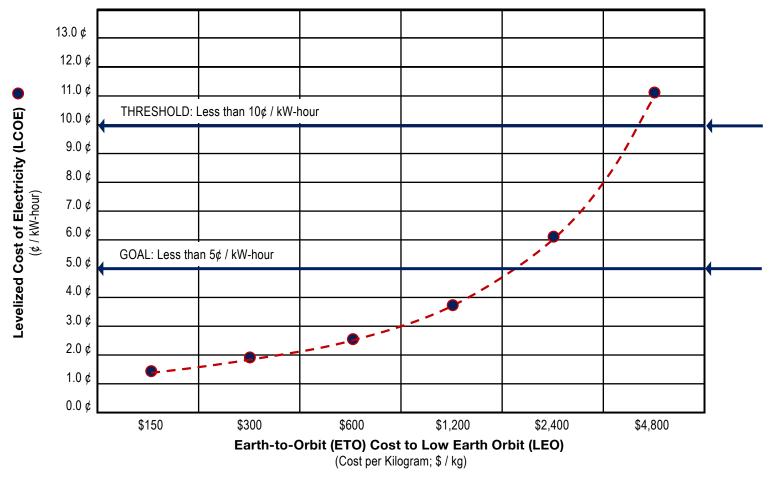

SPS-ALPHA Mark-II Modeling Results System Results as a Function of WPT Areal Mass

5/25/17


SPS-AL System

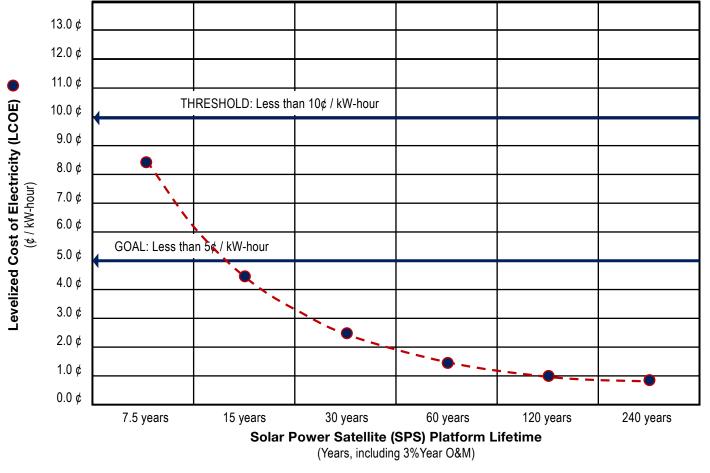
SPS-ALPHA Mark-II Modeling Results System Results vs. Concentration Ratio

SPS-ALPHA Mark-II Modeling Results System Results vs. Operating Temperature

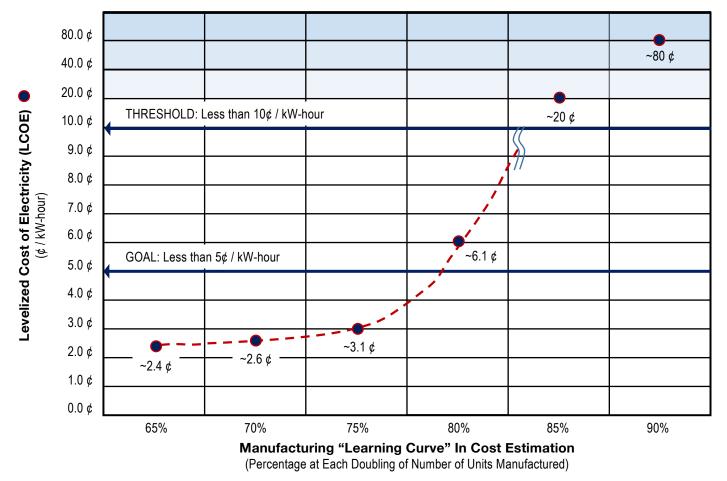


5/25/17

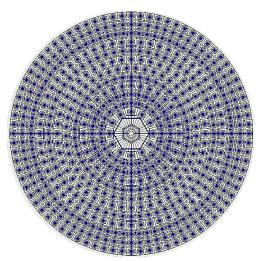
Mankins Space Technology, Inc.


SPS-ALPHA Mark-II Modeling Results System Results vs. ETO Costs

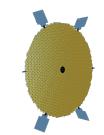
5/25/17


SPS-ALPHA Mark-II Modeling Results System Results vs. Platform Lifetime

5/25/17



SPS-ALPHA Mark-II Modeling Results System Results vs. Platform Mfg. Learning Curve



SPS-ALPHA Mk-II Overview Concept Details – Baseline @ Full-Scale

TOP VIEW

Max Diameter < 6 km "Stepped Cylinders" Conical Structural System Array of Several 1000s of Thin-Film Heliostats (Each @ ~1900 m²) Oversized Sail Array to use Light Pressure for Station-Keeping (Partial) SIDE VIEW Total Length ~ 13 km Reflectors / Reflector Array / Backbone sized to Provide Specific Concentration (~3:1) Uniformity of Illumination (<3%) Gravity Gradient Stabilized (With Artificial Gravity at ISAAC Facility at "Top" of Structural Backbone) Truss-Structure Connecting Heliostat Array and PV-WPT Array Docking / Construction / Servicing Station at Far-End from PV-WPT Array "Trim" Sails use Light Pressure for Station-Keeping (Partial) LEO-GEO SEP OTVs "Double" as On-Board Propulsion (Post Assembly)

BOTTOM PERSPECTIVE Diameter ~ 1.7 km Hyper-modular PV+WPT Array)

GROUND RECEIVER Diameter ~ 6 km Local Modular Energy Storage (up to ~2.5 GWh)

5/25/17

Mankins Space Technology, Inc.

Page 20

SPS-ALPHA Design Reference Missions

DRM 1	Installed Cost	"Platform Margin"	Reserve / Revenue
SPS Demo @ 20 kW in LEO	@ \$116 M	100 %	\$43 M
DRM 1a	Installed Cost	"Platform Margin"	Reserve / Revenue
10 x Commsats @ 20 kW in GEO	@ \$130 M	400 %	\$79 M
DRM 2	Installed Cost	"Platform Margin"	Reserve / Revenue
1 x MegaSat @ 100 kW in GEO	@ \$289 M	275 %	\$169 M
DRM 2a	Installed Cost	"Platform Margin"	Reserve / Revenue
10 x MegaSat @ 100 kW in GEO	@ \$153 M	275 %	\$69 M
DRM 3	Installed Cost	"Platform Margin"	Reserve / Revenue
1 x FOB Power @ 20 MW fm GEO	@ \$2.98 B	100 %	\$614 M
DRM 3a	Installed Cost	"Platform Margin"	Reserve / Revenue
10 x FOB Power @ 20 MW fm GEO	@ \$2.39 B	100 %	\$316 M
DRM 4	Installed Cost	"Platform Margin"	Reserve / Revenue
1 x Niche Power @ 250 MW fm GEO	@ \$7.05 B	100 %	\$1,387 M
DRM 4a	Installed Cost	"Platform Margin"	Reserve / Revenue
20 x Niche @ 250 MW fm GEO	@ \$5.06 B	100 %	\$391 M
DRM 5	Installed Cost	"Platform Margin"	Reserve / Revenue
1 x Baseload @ 2.1 GW fm GEO	@ \$14.52 B	100 %	\$2,846 M
DRM 5a	Installed Cost	"Platform Margin"	Reserve / Revenue
100 x Baseload @ 2.1 GW fm GEO	@ \$10.94 B	100 %	\$1,049 M

SPS-ALPHA Design Reference Missions

	DRM 1	Installed Cost	"Platform Margin"	Reserve / Revenue	
	SPS Demo @ 20 kW in LEO	@ \$116 M	100 %	\$43 M	
	DRM 1a	Installed Cost	"Platform Margin"	Reserve / Revenue	
	10 x Commsats @ 20 kW in GEO	@ \$130 M	400 %	\$79 M	
	DRM 2	Installed Cost	"Platform Margin"	Reserve / Revenue	
	1 x MegaSat @ 100 kW in GEO	@ \$289 M	275 %	\$169 M	
	DRM 2a	Installed Cost	"Platform Margin"	Reserve / Revenue	
	10 x MegaSat @ 100 kW in GEO	@ \$153 M	275 %	\$69 M	
	DRM 3	Installed Cost	"Platform Margin"	Reserve / Revenue	
	1 x FOB Power @ 20 MW fm GEO	@ \$2.98 B	100 %	\$614 M	
	DRM 3a	Installed Cost	"Platform Margin"	Reserve / Revenue	
	10 x FOB Power @ 20 MW fm GEO	@ \$2.39 B	100 %	\$316 M	
	DRM 4	Installed Cost	"Platform Margin"	Reserve / Revenue	
	1 x Niche Power @ 250 MW fm GEO	@ \$7.05 B	100 %	\$1,387 M	
	DRM 4a	Installed Cost	"Platform Margin"	Reserve / Revenue	
	20 x Niche @ 250 MW fm GEO	@ \$5.06 B	100 %	\$391 M	
	DRM 5	Installed Cost	"Platform Margin"	Reserve / Revenue	
	1 x Baseload @ 2.1 GW fm GEO	@ \$14.52 B	100 %	\$2,846 M	
	DRM 5a	Installed Cost	"Platform Margin"	Reserve / Revenue	
P	100 x Baseload @ 2.1 GW fm GEO	@ \$10.94 B	100 %	\$1,049 M	

SPS-ALPHA Design Reference Missions – DRM 1

Overview (CR = 1:1; Lifetime \leq 1	year)				
Platform Mass	Dry Mass	kilogi	rams	3	,810 kg
Platform Power on Orbit	RF Power Output	kilow	awtts	~19	.66 kW
Platform Power Delivered to Earth	Power to "Grid"	kilow	/atts		N/A
Platform Array / Transmitter	Diameter	met	ers		8.50 m
Ground Systems	Demo / Communications	Diamet	er (km)		N/A
Platform Installed Cost	Initial Cost in Orbit	\$, M		M \$	
Levelized Cost of Electricity (LCOE)	LCOE in Orbit	¢ / kW-hour		-hour	
Platform Hardware Specific Cost	H/W Cost per Mass	\$ / kg		\$ 22,4	123 / kg
Specific Cost of Launch to LEO	Launch Cost per Mass	\$ / kg		g \$ 5,000	
Operations (Space & Ground)	Annual Ops Cost	\$ / ነ	⁄ear		≤\$1M
Platform Summary	Primary Modules		Segme	nt Mass	%
Power Generation / Transmitter Array	WPT, SPG, ICs (Type 1), Bus I	Modules	,	1,628 kg	~45 %
Primary "Backbone" / Frame Structures	ICs (Type 1), Frames (Type 1 8	Type 2)		1,022 kg	~28 %
Reflector Array / Reflectors	ICs (Type 2), Frames (Type 7 Reflectors, Robotics	1 & 2),		492 kg	~13 %
Active Operations Support Systems	Robotics, WiFI, Communica Propulsion, AR&D, Kern	-		520 kg	~14 %

SPS-ALPHA Design Reference Missions – DRM 2a

Overview (CR = 2:1; Lifetime \leq 3	0 years)				
Platform Mass	Dry Mass	kilog	rams		8,470 kg
Platform Power on Orbit	RF Power Output	kilow	awtts		~107 kW
Platform Power Delivered to Earth	Power to "Grid"	kilow	vatts		N/A
Platform Array / Transmitter	Diameter	met	ers		14.0 m
Ground Systems	Demo / Communications	Diamet	er (km)		N/A
Platform Installed Cost	Initial Cost in Orbit	\$,	\$, M		\$153 M
Levelized Cost of Electricity (LCOE)	LCOE in Orbit	\$ / kW	/-hour	nour \$6.50	
Platform Hardware Specific Cost	H/W Cost per Mass	\$ / kg		\$11,080	
Specific Cost of Launch to GTO	Launch Cost per Mass	\$ /	\$ / kg		,400 / kg
Operations (Space & Ground)	Annual Ops Cost	\$/\	/ear	≤ \$3	M / year
Platform Summary	Primary Modules	•	Segmen	nt Mass	%
Power Generation / Transmitter Array	WPT, SPG, ICs (Type 1), Bus	Modules	4,	233 kg	~50.0 %
Primary "Backbone" / Frame Structures	ICs (Type 1), Frames (Type 1 & Type 2) 1,			723 kg	~20.3%
Reflector Array / Reflectors	ICs (Type 2), Frames (Type 1 & 2), Reflectors, Robotics			939 kg	~11.1 %
Active Operations Support Systems	Robotics, WiFI, Communica Propulsion, AR&D, Kern		1,	575 kg	~18.6 %

SPS-ALPHA Design Reference Missions – DRM 3

Overview (CR = 3:1; Lifetime \leq 3	0 years)					
Platform Mass	Dry Mass	Metric	: Tons	9	9.201 MT	
Platform Power on Orbit	RF Power Output	Mega	watts		2.52 GW	
Platform Power Delivered to Earth	Power to "Grid"	Mega	watts		2.08 GW	
Platform Array / Transmitter	Diameter	met	ers		1,740 m	
Ground Systems	Rectenna	Diame	ter (m)		6,100 m	
Platform Installed Cost	Initial Cost in Orbit	\$,	Μ	\$10.94 B		
Levelized Cost of Electricity (LCOE)	LCOE in Orbit	\$ / kW	/-hour	2.5 ¢/ kW		
Platform Hardware Specific Cost	H/W Cost per Mass	\$ /	kg	\$228 / k		
Specific Cost of Launch to GTO	Launch Cost per Mass	\$ /	\$ / kg		\$600 / kg	
Operations (Space & Ground)	Annual Ops Cost	\$/\	/ear	≤ \$1	00 M / yr	
Platform Summary	Primary Modules		Segmer	nt Mass	%	
Power Generation / Transmitter Array	WPT, SPG, ICs (Type 1), Bus	Modules	6,6	00 MT	~71.7 %	
Primary "Backbone" / Frame Structures	ICs (Type 1), Frames (Type 1 8	1,0	20 MT	~11.1 %		
Reflector Array / Reflectors	ICs (Type 2), Frames (Type 1 & 2), 1,2 Reflectors, Robotics			90 MT	~14.0 %	
Active Operations Support Systems	Robotics, WiFI, Communica Propulsion, AR&D, Kern			39 MT	~4.2 %	

SPS-ALPHA Design Reference Missions – DRM 5a

Overview (CR = 3:1; Lifetime \leq 3	0 years)					
Platform Mass	Dry Mass	Metric	: Tons		9.201 MT	
Platform Power on Orbit	RF Power Output	Mega	watts		2.52 GW	
Platform Power Delivered to Earth	Power to "Grid"	Mega	watts		2.08 GW	
Platform Array / Transmitter	Diameter	met	ers		1,740 m	
Ground Systems	Rectenna	Diame	ter (m)		6,100 m	
Platform Installed Cost	Initial Cost in Orbit	\$,	М	\$10.94 B		
Levelized Cost of Electricity (LCOE)	LCOE in Orbit	\$ / kW	/-hour	2.5 ¢/ kW		
Platform Hardware Specific Cost	H/W Cost per Mass	\$ /	kg	\$228 / k		
Specific Cost of Launch to GTO	Launch Cost per Mass	\$ /	kg	\$600 / kg		
Operations (Space & Ground)	Annual Ops Cost	\$/\	⁄ear	≤ \$100 M / yr		
Platform Summary	Primary Modules	•	Segmen	nt Mass	%	
Power Generation / Transmitter Array	WPT, SPG, ICs (Type 1), Bus	Modules	6,6	00 MT	~71.7 %	
Primary "Backbone" / Frame Structures	ICs (Type 1), Frames (Type 1 8	1,0	20 MT	~11.1 %		
Reflector Array / Reflectors	ICs (Type 2), Frames (Type 1 & 2), 1,2 Reflectors, Robotics			90 MT	~14.0 %	
Active Operations Support Systems	Robotics, WiFI, Communica Propulsion, AR&D, Kern			39 MT	~4.2 %	

- There is an urgent need for new & sustainable (i.e., zero net Carbon) energy sources that can be scaled during the coming decades to deliver TW of power globally
- Space Solar Power is one of the possible sources for this energy and it requires no technical breakthroughs to be realized
- An updated version of the concept of the Solar Power Satellite via Arbitrarily Large Phased Array – "SPS-ALPHA Mark-II" – has been developed
- SPS-ALPHA Mark-II promises to deliver electricity at an LCOE below 3¢ per kilowatt-hour with advanced ETO infrastructure, and below 10¢ / kWh with systems that are available today...
- Time is short; the world needs to begin now to develop an array of novel energy solutions to meet the requirements of humanity for the future