The 36th Inter. Space Development Conference, St. Louis, USA, May 25-26, 2017

On New Developments of Space Solar Power Station (SSPS)

of China

Baoyan Duan

Tel: +86-13992819589 E-mail: byduan@xidian.edu.cn

Research Institute on Mechatronics, Xidian University, Xi'an, China

Terra Cotta Warriors Qin Dynasty 221–206 BC

meril

China

XIDIAN University, under the jurisdiction of the Ministry of Education, dedicates primarily to the electronics and information education and research, with an integration of a wide range of academic subjects covering engineering, science, management, economy, arts and social sciences.

- One of the universities funded by Project 985 (Innovation Platform for Superiority Subject)
- One of the universities funded by Project 211
- One of the universities funded by 2011 Project (National Collaborative Innovation Plan)
- One of 55 universities with Graduate School

Candidate energies for the fourth stage

Energy types	Clean	Safety	Reliability	Price / cent
Nuclear	Yes	?	?	13
Wind	Yes	Yes	Geographic restrictions	8
Ground solar	Yes	Yes		12
Hydropower	Yes	Yes		6
Space solar	Yes	Yes	Yes	6

Space solar: satisfy energy demand for human society

SSPS : a good choice to solve the energy problem

Main parts:

- Solar power collection
 - and photoelectric conversion
- Wireless power transmission
- Ground-receiving system

Process of energy conversion:

Sunlight ↓ Direct current ↓ Microwave ↓ Direct current

PV cell toward the sunlight .

relative rotation

Antenna toward the earth

Reference Model Power-mass ratio: 51 W / kg

Sun Tower Power-mass ratio: 72 W / kg

Condenser

Non-condenser

Rotary joints: GW level

bottleneck

Implementation: 75 kW

Non-condenser

Condenser

Multi-Rotary Joints Concept China Academy of Space Technology, 2013

Condenser

 Multi-Rotary Joints Concept

China Academy of Space Technology, 2013

Collector

Transmitters

Gird

Beam

Disadvantages: Complex control

Heat dissipation

ALPHA Concept Power-mass ratio: 79 W / kg

Integrated Symmetrical Concentrator Power-mass ratio: 63 W / kg

Non-condenser

Disadvantages: Complex control

Light leakage

Heat dissipation

OMEGA Concept (Xidian University) Power-mass ratio: 98 W / kg

Fundamental problems

Fundamental problems

Condenser

Advantages:

- Main reflector without adjustment
- Lower heat dissipation

Assumption:

Thin film material: semi-transparent for sunlight

OMEGA Concept (Xidian University) Power-mass ratio: 98 W / kg

Background

Multi-domain Physical Systems

Synthesization, Coordination, and Optimization

Wireless Power Transmission

Transmitting antenna & Rectenna Beam control (shape & direction)

In-orbit assembly

Assembly sequence design Vibration attenuation

Deployable array

Large scale, Low areal weight, Small stowed package Dynamic analysis and control

Heat dissipation

Transport rocket

Operation security

- Uninvolved here

Multi-systemsEffective WPTIn-orbit assemblyDeployable array

Multi-systems

Effective WPT |**In-orbit assembly**| **Deployable array**

Synthesization

No relative movement among modules Limits: Iack of coordination equation among multi-sub-systems

Rigid modules

Coordination

lack of coupling model among

multidisciplinary in SSPS

Space station

Condenser Sub-system

Electric Sub-system

Ę

Ē

Antenna Sub-system

Effective WPT In-orbit assembly Deployable array Multi-systems Type: Active phased array antenna **Operating frequency : 5.8GHz** $\eta = 1 - e^{\tau \tau}$ **Friis Equation:** Transmitting beam collection efficiency (BCE) antenna Microwave beam area of transmitting antenna → area of rectenna Power distribution wavelength distance between two antennas Efficiency requirement \blacksquare BCE > 95% D_R Receiving antenna $D_T D_R \ge 3.7 \times 10^6 \text{ m}^2$ $\leftarrow \tau \ge 2$ System cost $D_R = 10 \text{ km}$ $D_T = 400 \text{m};$ $D_R = 20 \text{ km}$ $D_T = 200 \text{m}$ (Reduce the Trans. antenna size)

Multi-systems

Effective WPT In-orbit assembly Deployable array

Outside test – Sichuan University

Inside test – CAST & Xidian University

2016, Power: 1 kW, Distance: 1.6km Efficiency: 8%

Magnetron: 2.45GHz, 500W, Eff.=75%

Advantages: High efficiency Disadavantages: Difficulty of phase lock Lifespan problem

2015, Power: 50 W, Distance: 11 m Efficiency: 16%

GaN solid-state amplifier: 5.8GHz 50W, Eff.=63

Advantages: High frequency stability Disadvantages: Lower Efficiency

Multi-systems

Effective WPT In-orbit assembly **Deployable array**

Multi-systems

Effective WPT In-orbit assembly

Max size: 22m Surface density: 0.4kg/m² Surface accuracy: 0.1 mm level Size restriction

Deployable array

Max size: 14m Surface density : charger mass Surface accuracy: mm level Reliability restriction

Max size: 5m Surface density: 1kg/m² Surface accuracy: 0.1 mm level Laboratory stage

Max size: 1200m² Surface density: ultralight Surface accuracy: low

Prototype of SSPS

Location ? Xi'an City South campus of the Xidian University

Location ? Xi'an City South campus of the Xidian University

FAST 50 experiment model

Location? Xi'an City South campus of the Xidian University FAST 50m experimental site

FAST 50 experiment model

Pingtang county, Guizhou province (Accomplished at 25/09/2016)

Major scientific event of 2016

FAST 50 experiment model

(Mode 1: Vertical transmission)

FAST 50 experiment model

(Mode 1: Vertical transmission)

Overall efficiency: 4.32% DC-DC efficiency: 16.2% (14.7% Japan) BCE is enhanced (Stepped amplitude (90%) v.s. Uniform amplitude (81.7%))

Schematic diagram of the OMEGA – SSPS model

Technologies

Developments

Prospects

Technologies

Developments

senior consultant(6 academicians) Xiji Wang, Guirong Min, Lehao Long, Shizhong Yang, Baoyan Duan, Changchun Ge

- participating experts:
- 16 ministries 49 organizations
- 130experts

Road Map

Thanks for your attention !