The Fassibility of Case Caler Downerfor

 The Feasibility of Space Solar Power for Forward Operating Bases

r orward operating bases

Presenters: Alex Walts, Clark Esty

Allied Universities Team:

Undergraduate Students: Miles Johnson, Amy Li, Sean Rankin, Yohnei Shambourger, Vinay Simlot Graduate Students: Clark Esty, Reid Hyland, Joshua Rogers, Alex Walts, Zeyu Zhang Faculty Advisor: Dr. Paul Jaffe

Overview

- Interest in this study
- Defining a Forward Operating Base (FOB)
- Discussion of FOB energy requirements and cost of this energy
- SSP in FOB applications
- Cost and savings analysis of using SSP
- Closing thoughts

Why Research This Topic?

- Countless examples of how technology progressed through military development, then trickled down to society
 - ENIAC, first programmable computer, developed by U.S. Army Research and Development Laboratory [1]
 - GPS
- If SSP were launched right now, the cost per kWh could not compete with what you pay at home
 - FOB application takes advantage of the enormous price of energy production to allow SSP to be able to compete in a niche market
 - SSP could then be proven successful/reliable = more funding = more development = lower costs = more general applications
- This technology could further U.S. military interests and has the potential to save lives

Overview

- A brief background of SSP
- Defining a Forward Operating Base (FOB)
- Discussion of FOB energy requirements and cost of this energy
- SSP in FOB applications
- Cost and savings analysis of using SSP
- Closing thoughts

Forward Operating Bases

- DoD definition: "a facility used to support tactical operations without establishing full support facilities" [2]
- At peak of Afghanistan involvement, 400 FOBs existed in this country alone
 - More than 700 existed elsewhere around the globe [3]
- Main locations are Germany, Belgium, Japan, Africa, South Korea, and Middle East [3]
 - Establishes most FOBs below 60 degrees latitude great for SSP accessibility
 - Assuming a stationary GEO satellite rather than a LEO constellation

How to Bound the Problem

- **People:** FOBs are designed to accommodate platoons and companies
 - Platoon = 25-60 soldiers [5]
 - Company = 70-250 soldiers [5]
- Other sources state 175 soldiers is a good average [6]
- <u>Consumption</u>: The continuous power consumption per soldier can range from 0.5 kW to 2 kW [5]
- **Duration:** Missions can range from a few weeks to 9 months
- **Transportation:** Several aircraft at their disposal [7]
 - MV-22 Osprey (vertical takeoff/landing) aircraft
 - KC130-J Super Hercules

Problem Now Bounded

- A reliable average for soldiers needing power is 175
- Lower estimates of 0.5-0.8 kW/person does not include HVAC
 - Use the upper estimate of 2 kW
 - (2 kW * 175 soldiers) + 50 kW margin = 400 kW continuous
- With power requirements known, mission duration can vary without impacting results of the study
- Assume 2 flights of the MV-22 Osprey to deliver SSP ground receiver with a possible 3rd for ground structure

Overview

- A brief background of SSP
- Defining a Forward Operating Base (FOB)
- Discussion of FOB energy requirements and cost of this energy
- SSP in FOB applications
- Cost and savings analysis of using SSP
- Closing thoughts

FOB Fuel Usage and Costs

Monetary Cost

- Study found the average fuel consumption per person per day is 4.3 gallons [5]
- 4.3 gallons * 175 soldiers = 760 gallons per day
- Bases primarily conducting ground operations use 78% of this for non-vehicle applications [5]
- DoD estimates average cost of \$45 per gallon, therefore one FOB could consume at least \$26,676 worth of fuel per day for the 593 gallons needed for base support [5]

• Human Life Costs

- 2007: 3,000 personnel killed or wounded in fuel or water delivery attempts [8]
- 2010: U.S. Transportation Command estimates 1,100 ground convoy attacks [8]

FOB Battery Usage and Cost

- Not the primary source of power, however, they are used to support electronic equipment
- Weight increases due to 250% increase in radio usage and 300% increase in computer usage by U.S. Marines in recent years [8]
 - 2011: DoD estimates 10 lbs per soldier in their packs
 - 2012: Battery weight per person increases to 18 lbs
 - If trend continues, batteries will become prohibitively heavy
- Despite the weight of these batteries, most are used in personal packs on the move. SSP cannot solve this issue.

Overview

- A brief background of SSP
- Defining a Forward Operating Base (FOB)
- Discussion of FOB energy requirements and cost of this energy
- SSP in FOB applications
- Cost and savings analysis of using SSP
- Closing thoughts

Microwave Power Transmission

[9]

Atmospheric attenuation

- Zoomed in on microwave region
 1-350 GHz
- Minimal losses for lower frequencies

Note: 2.45 and 5.8 GHz fall within the industrial, scientific, and medical (ISM) radio bands

Microwave Power Transmission

Rain attenuation

- Minimal for lower frequencies
- Significant effect on 35 and 95 GHz frequencies

World Health Organization (WHO) Adverse heath effects

- Occur at power densities over 1,000 W/m² for frequencies above 10 GHz
- Eye cataracts, skin burns

IEEE standard

- Safety factor of 10
- Recommended power densities
 - $300-3,000 \text{ MHz} \rightarrow f_{M}/30$
 - 3,000 30,000 MHz → 100

Laser Power Transmission

Two options looked at:

• IR and Visible

Significant scattering losses as the wavelength decreases

Lasers deal with much high power densities

Need beam forming for efficiency

Laser Power Transmission

Weather has significant impact on laser transmission

Infrared Energy Health Effects

• Cataracts – eye cannot detect IR

• Burns

Visible Energy Health Effects

 Indirect DNA damage through generation of reactive oxygen species

Receiver Size Trade Study

Note: Receiver efficiencies not accounted for in this plot

Assumptions:

Microwave

- Transmitter Area = 250,000 m²
- Receiver Area = 24,667 m²
 - Two MV-22 Osprey transports
 - Rectenna thickness of 1.5 mm [14]

Laser

- Transmitter Area = 200 m²
- Receiver Area = 12.3 m²

Geostationary Equatorial Orbit (GEO)

Use of Gobau and Schwering's Formulas 16

Overview

- A brief background of SSP
- Defining a Forward Operating Base (FOB)
- Discussion of FOB energy requirements and cost of this energy
- SSP in FOB applications
- Cost and savings analysis of using SSP
- Closing thoughts

Cost Analysis – Levelized Cost of Energy

[15]

SPS

 $\frac{Launch Cost(\$/kg) + System Cost(\$/kg)}{Mass Specific Power(W/kg) * Lifetime(hours)} = \$/kWh$

Inputs	Case 1	Case 2	Case 3	Case 4
Mass-specific Power (W/kg)	5	40	250	500
Total Service Life (years)	20	20	20	20
Cost of Launch $(\$/kg)$	3,371	3,371	3,371	3,371
Cost of Space Segment $(\$/kg)$	10,000	2,000	500	100
Output				
Levelized Cost of Energy $(\$/kWh)$	15.25	0.77	0.09	0.04

Only changes in mass-specific power and cost of space segment allowed Launch cost will likely decrease

FOB

\$26,676 for fuel per day 1 gallon \approx 40.7 kWh Assumed 45% efficiency \rightarrow 18.32 kWh/gallon 593 gallons \rightarrow 10,861 kWh

Levelized cost for FOB \rightarrow 2.46 \$/kWh

Case 1 – Current technology Case 2 – 5 years in the future Case 3 – 10 years in the future Case 4 – further in the future

Cost Analysis – Savings to Human Life

- As stated, 3,000 soldiers killed or injured annually in convoys
- 80% of truck convoys supply fuel to FOBs [5]
 - As mentioned, up to 78% of fuel is what can be saved by using an SSP concept
 - 3,000 * 80% * 78% = 1872 soldiers
- Any technology that has the ability to reduce potential casualties regarding a certain operation by up to 62% deserves serious consideration
- Safe to assume that the cost of human life vastly outweighs any monetary cost
 - Automatic death gratuity of \$100,000 \$800,000 per person [16]
 - 1,872 people equates to \$187.2 million \$1.5 billion annually

Overview

- A brief background of SSP
- Defining a Forward Operating Base (FOB)
- Discussion of FOB energy requirements and cost of this energy
- SSP in FOB applications
- Cost and savings analysis of using SSP
- Closing thoughts

Summary-MPT

- Ground receiving array size is fixed
- A small transmitting array leads to poor transmission efficiency and low power densities
- MPT frequencies above 5.8 GHz become more susceptible to atmospheric and rain attenuation
 - Major advantage over laser since military operations cannot cease simply due to rain
- One feasible solution for MPT is 95 GHz since transmitter array size increases as microwave frequency decreases
 - Going to have attenuation
 - 2.45 and 5.8 GHz produce prohibitively large transmitter arrays
 - Assumed fixed receiver size of 24,667 m² two MV-22 Osprey transports
 - Rectenna thickness of 1.5 mm [14]
 - One goal of FOB application is to reduce all hardware sizes

Summary-Laser

- Ground receiving array size is fixed
- Significantly smaller transmitting array sizes while maintaining high beam efficiency
- Subject to scattering and attenuation effects in the atmosphere, especially in poor weather
 - Could be mitigated by having the SSP system also charge a reserve battery supply
- One very feasible solution is a 2.1 micron beam with a transmitting area of 20 m² and a receiver area of 500 m²
 - 500 m² much lower than the 24,667 m² from two MV-22 Osprey transports
 - Assumed a rectenna thickness of 1.5 mm [14]

Future Work

- Look at weight/options for ground antenna structure
 - Excessive structural mass could disprove this study's 1 flight assumption
 - This could be another reason for laser as the best option
- Look at more in depth design of space platform
 - What would the overall size of a space satellite be with solar panels and other structure?
 - Will likely still follow the scaled size assumption discussed
- Gain an even better understanding of military standards
 - Does the military have different (higher) allowable power density health standards?
 - How does frequency allocation work in strictly military applications?
- Geopolitical Effects
 - How do other countries feel about potential high power lasers being used for the U.S. military on foreign soil?

References

- 1. "Army Innovations: The First Cellular Network," https://gdmissionsystems.com/army-innovationsfirst-cellular-network. Accessed: 2017-05-13.
- 2. Wong, L. and Gerras, S., "How the forward operating base is changing the life of combat soldiers," Retirado da internet em, Vol. 31.
- 3. Turse, N., "The 700 Military Bases of Afghanistan," http://www.cbsnews.com/news/the-700military-bases-of-afghanistan/. Accessed: 2017-02-28.
- 4. Vine, D., "The United States Probably Has More Foreign Military Bases Than Any Other People, Nation, or Empire in History," https://www.thenation.com/article/the-united-states-probably-hasmore-foreign-military-bases-than-any-other-people-nation/-or-empire-in-history/. Accessed: 2017-02-21.
- 5. Forward, S., "Strategic Environmental Research and Development Program (SERDP): Sustainable Forward Operating Bases," Tech. rep., DTIC Document, 2010.
- 6. "Unit Size: US Army in the late-20th Century," https://www.mirecc.va.gov/docs/visn6/8_us_military_unit_size.pdf. Accessed: 2017-05-13.
- 7. Delaporte, M., "SPMAGTF-Crisis Response," https://www.mcamarines.org/leatherneck/2014/04/filling-gap. Accessed: 2017-02-19
- 8. DoD, U., "Energy for the Warghter: Operational Energy Strategy. ed," DD Deputy Secretary of Defense. Washington DC.

References

- 9. ITU, I., Attenuation by atmospheric gases, International Telecommunica-tion Union-Recommendation, pp. 67610.
- 10. Okamura, S. and Oguchi, T., Electromagnetic wave propagation in rain and polarization effects, Proceedings of the Japan Academy, Series B, Vol. 86, No. 6, 2010, pp. 539562.
- 11. air systems command, N. and air warfare center, N., Electronic warfare and radar systems engineering handbook, Naval air warfare center, 1997.
- 12. Sanii, B., Calibrating surface weather observations to atmospheric attenuation measurements, in Photonics West 2001-LASE, International Society for Optics and Photonics, 2001, pp. 293301.
- 13. Guo, J. and Zhao, X.-J., Attenuation characterization of 532nm and 1064nm laser propagating in rain, Optik-International Journal for Light and Electron Optics, Vol. 127, No. 20, 2016, pp. 90889094.
- 14. Takhedmit, H., Cirio, L., Merabet, B., Allard, B., Costa, F., Vollaire, C., and Picon, O., "A 2.45-GHz dual-diode rectenna and rectenna arrays for wireless remote supply applications," International journal of microwave and wireless technologies, Vol. 3, No. 03, 2011, pp. 251258.
- 15. Jaffe, P., Course Overview, ENAE788T Introduction to Space Solar Lecture, 2017.
- 16. "Death Gratuity," MyArmyBenefits Available: http://myarmybenefits.us.army.mil/Home/Benefit_Library/Federal_Benefits_Page/Death_Gratuit y_.html?serv=147.

Thank you! Questions?

Image Credit: http://www.marforaf.marines.mil/News/News-Article-Display/Article/520559/marines-test-out-alternative-energy-system-at-african-lion/

Appendix

Image Credit: http://www.marforaf.marines.mil/News/News-Article-Display/Article/520559/marines-test-out-alternative-energy-system-at-african-lion/

Receiver Size Trade Study

	Frequency	λ (m)	$A_t (m^2)$	$A_r (m^2)$	% Efficiency	P_t	Power Density (W/m^2)
	2.45 GHz	0.1224	100,000	24,667	0.01286	3.1 GW	16.2
Microwave	5.8 GHz	0.0517	100,000	24,667	0.07207	$0.56 \ GW$	16.2
Region	35~GHz	8.565e-3	100,000	24,667	2.591	15 MW	16.4
	95 GHz	3.156e-3	100,000	24,667	17.59	2.3 MW	17.8
	30 THz	10e-6	20	500	7.51	5.3 MW	831
Laser	143 THz	2.1e-6	20	500	82.98	$482 \ kW$	1,707
Region	300 THz	1e-6	20	500	99.96	$400.2 \ kW$	6,249
	599.6 THz	500e-9	20	<mark>500</mark>	100	$400 \ kW$	24,988

Fixed transmitter and receiver area

- MV-22 Osprey Cargo Capacity 18.5 m³
 - Assumed entire cargo bay
- Rectenna thickness 1.5 mm
- Use of Gobau and Schwering's Formulas

Beam Efficiency (%) Does not account for receiver efficiency

Receiver Size Trade Study

	Frequency	λ (m)	$A_t \ (m^2)$	$A_r \ (m^2)$	% Efficiency	$P_t (kW)$	Power Density (W/m^2)
	$2.45 \ GHz$	0.1224	2.5e9	24,667	96	416.7	54.4
Microwave	5.8~GHz	0.0517	4.5e8	$24,\!667$	96	416.7	54.4
Region	35 GHz	8.565e-3	1.2e7	$24,\!667$	96	416.7	54.4
	95 GHz	3.156e-3	1.7e6	$24,\!667$	96	416.7	54.4
	30 THz	10e-6	3.3e4	12.3	96	416.7	108,750
Laser	$143 \ THz$	2.1e-6	$1,\!474$	12.3	96	416.7	108,750
Region	$300 \ THz$	1e-6	334	12.3	96	416.7	108,750
	$599.6 \ THz$	500e-9	84	12.3	96	416.7	108,750

Fixed receiver area and efficiency

- MV-22 Osprey Cargo Capacity 18.5 m³
 - Assumed entire cargo bay
- Rectenna thickness 1.5 mm
- Use of Gobau and Schwering's Formulas

Beam Efficiency (%) Does not account for receiver efficiency

Relevant Equations

Gobau and Schwering's Formulas

Beam efficiency $\eta = 1 - e^{-\tau^2}$

au parameter and power density (pd)

$$\tau^2 = \frac{P_r}{P_t} = \frac{A_t A_r}{\lambda^2 d^2} \rightarrow pd = \frac{P_r}{A_r} = \frac{A_t P_t}{\lambda^2 d^2}$$

Where λ - wavelength, A_t – transmitter area, A_r – receiver area, d - distance

Power Density – MPT – 2.45 GHz

Assumptions:

- Transmitter area allowed to vary from 100,000 m² to 3,000,000 m²
- Receiver area allowed to vary from 12,333 m² to 24,667 m²
 1-2 MV-22 Osprey flights _____

- Ideal receiver efficiencies
- Use of Gobau and Schwering's Formulas

Power Density – MPT – 5.8 GHz

Assumptions:

- Transmitter area allowed to vary from 100,000 m² to 3,000,000 m²
- Receiver area allowed to vary from 12,333 m² to 24,667 m²
 - 1-2 MV-22 Osprey flights

- Ideal receiver efficiencies
- Use of Gobau and Schwering's Formulas

Power Density – MPT – 35 GHz

Assumptions:

- Transmitter area allowed to vary from 100,000 m² to 3,000,000 m²
- Receiver area allowed to vary from 12,333 m² to 24,667 m²
 - 1-2 MV-22 Osprey flights

- Ideal receiver efficiencies
- Use of Gobau and Schwering's Formulas

Power Density – MPT – 95 GHz

Assumptions:

- Transmitter area allowed to vary from 100,000 m² to 3,000,000 m²
- Receiver area allowed to vary from 12,333 m² to 24,667 m²
 1-2 MV-22 Osprey flights

- Ideal receiver efficiencies
- Use of Gobau and Schwering's Formulas

Power Density – Laser – 10 μ m

Assumptions:

- Transmitter area allowed to vary from 500 m² to 20,000 m²
- Receiver area allowed to vary from 20 m² to 250 m²

- Ideal receiver efficiencies
- Use of Gobau and Schwering's Formulas

Power Density – Laser – 2.1 μ m

Assumptions:

- Transmitter area allowed to vary from 500 m² to 20,000 m²
- Receiver area allowed to vary from 20 m² to 250 m²
- GEO
- Ideal receiver efficiencies
- Use of Gobau and Schwering's Formulas

Power Density – Laser – 1 μ m

Assumptions:

- Transmitter area allowed to vary from 500 m² to 20,000 m²
- Receiver area allowed to vary from 20 m² to 250 m²
- GEO
- Ideal receiver efficiencies
- Use of Gobau and Schwering's Formulas

Power Density – Laser – 500 nm

Assumptions:

- Transmitter area allowed to vary from 500 m² to 20,000 m²
- Receiver area allowed to vary from 20 m² to 250 m²
- GEO
- Ideal receiver efficiencies
- Use of Gobau and Schwering's Formulas

NRL Sandwich Module

Mass specific power

Ambient conditions

- 7.8 W/kg one sun concentration
- 13.8 W/kg three suns concentration

Jaffe, P., Hodkin, J., Harrington, F., Person, C., Nurnberger, M., Nguyen, B., LaCava, S., Scheiman, D., Stewart, G., Han, A., Hettwer, E., and Rhoades, D., "Sandwich module prototype progress for space solar power," *Acta Astronautica*, vol. 94, Feb. 2014, pp. 662–671.

SpaceX Launch Costs

CAPABILITIES & SERVICES

SpaceX offers competitive pricing for its Falcon 9 and Falcon Heavy launch services. Modest discounts are available, for contractually committed, multi-launch purchases. SpaceX can also offer crew transportation services to commercial customers seeking to transport astronauts to alternate LEO destinations.

PRICE	FALCON 9		FALCON HEAVY	
STANDARD PAYMENT PLAN (2018 LAUNCH)	\$62M Up to 5.5 mT to GTD	s	\$90M Up to 8.0 mT to 6TD	S
DESTINATION	PERFORMANCE*	-	PERFORMANCE*	A
LOW EARTH ORBIT (LEO)	22,800 kg 50,265 lbs	=	63,800 kg 140,660 lbs	E
GEOSYNCHRONOUS TRANSFER ORBIT (GTO)	8,300 kg 18,300 lbs	×	26,700 kg 58,860 lbs	×
PAYLOAD TO MARS	4,020 kg 8,860 lbs		16,800 kg 37,040 lbs	
		61E.84		GRAA STEAA STEAA
*Performance represents max capability on	fully expendable vehicle		Inclin	nation: LEO = 28.5°, GTO = 27

http://www.spacex.com/about/capabilities

Cost Analysis – Levelized Cost of Energy

Inputs	Case 1	Case 2	Case 3	Case 4
Mass-specific Power (W/kg)	5	40	250	500
Total Service Life (years)	20	20	20	20
Cost of Launch $(\$/kg)$	3371	3371	3371	3371
Cost of Space Segment $(\$/kg)$	10,000	10,000	10,000	10,000
Output				
Levelized Cost of Energy $(\$/kWh)$	15.25	1.91	0.31	0.15

Falcon 9 Heavy Launch Costs Constant Cost of Space Segment

http://www.spacex.com/about/capabilities

Cost Analysis – Levelized Cost of Energy

Inputs	Case 1	Case 2	Case 3	Case 4
Mass-specific Power (W/kg)	5	40	250	500
Total Service Life (years)	20	20	20	20
Cost of Launch $(\$/kg)$	3371	3371	3371	3371
Cost of Space Segment $(\$/kg)$	20,000	10,000	$5,\!000$	2,500
Output				
Levelized Cost of Energy $(\$/kWh)$	26.66	1.91	0.19	0.07

Falcon 9 Heavy Launch Costs

http://www.spacex.com/about/capabilities