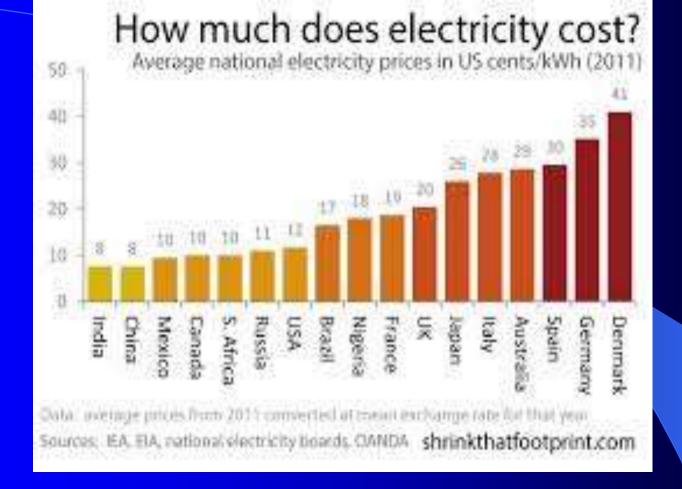
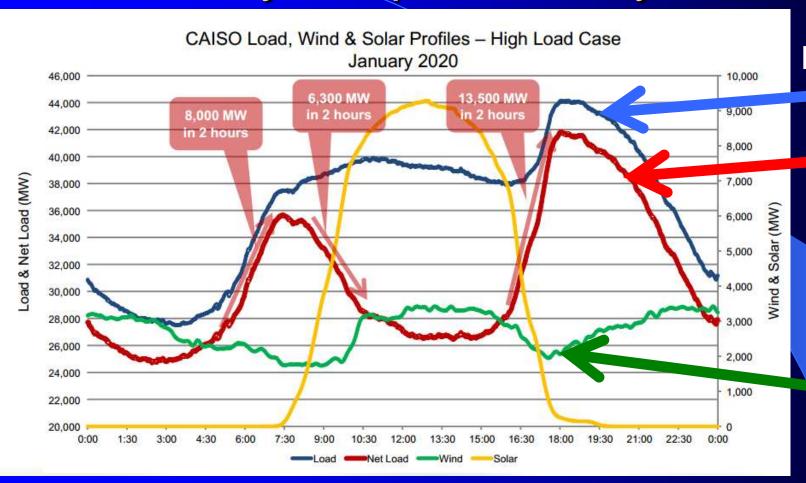
Heat to Electricity: Lessons from Earth Based Technology


- 2010-14 White House Mandate; now SERC, IEEE
- Earth markets: very diverse, location, time of day
 - Latin America best solar farm options, needs wires
 - SSP huge need in Japan, Korea, far north...
- Solar thermal vs PV in Chile: huge progress Heat to Electricity Core technologies:
 - Here now: thermocouples (space), Stirling 1, Brayton* 3
 - Key R&D: Stirling gen2, gen3; JTEC; Q

*Google "Brayton Energy"

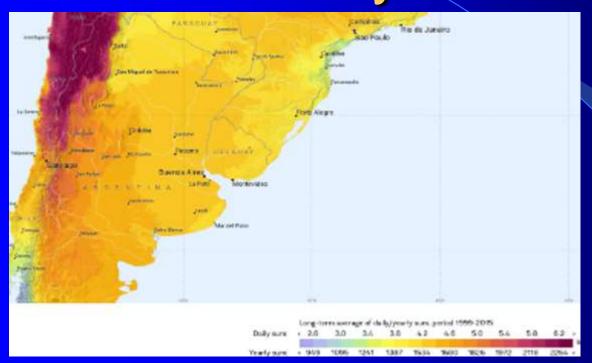
"NSF is currently supporting research to develop a '4th generation intelligent grid' that would use intelligent system-wide optimization to allow up to 80% of electricity to come from renewable sources and 80% of cars to be pluggable electric vehicles (PEV) without compromising reliability, and at minimum cost to the Nation (Werbos 2011)."


(search on White House smart grid 2011)

*www.werbos.com/E/GridIOT.pdf

- US and EU are already above 10 cents per kwh. China is less, but heavily subsidized, encountering shortages and price rises with coal (not counting CO2)
- OECD/IEA: world uses 21 thousand terawatt hours per year (2011). At 10 cents per kwh, that is worth \$2 trillion per year. With wind or solar supplying all, that would double or more. (Storage needs, backup, regulation.)

Time of day and predictability are crucial


Demand

Demand Minus 2020 solar

Wind

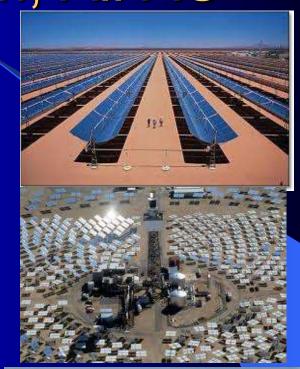
- Chile and Brazil have unique hydro base, so intelligent timing of its use avoids need for more storage
- Most of rest of world faces tricky choices, 10¢ extra

CTG Already Invests in Renewables in Brazil. Why Go to Chile?

Source: SolarGIS

Because cost per kwh is half as much when sun is more than twice as strong, for any technology.
 5¢/kwh + 2¢/kwh < 10¢/kwh, difference worth \$30 billion on \$100 billion. (Add 2¢ in Brazil anyway.)

Proposed Start: 10 gigawatts on new line as long as TX→PJM 2¢/kwh



1gw→2.8TWH/year. With (10¢-3¢-2¢)*28TWH, \$1.5 billion/year extra profit on \$3b investment

GEF 2006: Thee Types of Solar Thermal Solar Farm, All AC

- Already proven, ≥ 20 ¢ in US:
 - Giant troughs using much water
 - Power towers: little mirrors focus on "eye in the sky": new way to make synfuel (UNH)
- Unproven leadership opportunity, solar orchards:
 - Each "tree" stands on its own,
 moving reflector points to small
 Stirling engine. (Sandia/STM)

Why Solar Orchards Probably Cost Less

- Sandia/NASA/STM estimated 5-7¢/kwh in mass production, assuming more efficient Stirling engine. Can be scaled up quickly, no new factories necessary. (Existing engine, body factories, etc.)
- Stirling Energy Systems (Sandia) estimated initial 12¢/kwh for 750-megawatt plant actually under construction, with old 30% engine, until legal orders to stop.
- Under new Chinese owners, STM is expanding but still relies on 30% efficient engine.
- Lennart Johansson, co-inventor of Stirling, has new..

- 2016: 3¢/kwh PPAs based on solar cells probably safe at 10 gigawatts, but need hedge to secure the path to \$100 billion/year (i.e. be sure of <8¢/kwh)
- Power towers have sold
 12¢/kwh technology, but 6¢
 cents is in the pipeline
- Unproven leadership opportunity, solar orchards:
 - Each "tree" stands on its own,
 moving reflector points to small
 Stirling engine. (Sandia/STM)

How can we be certain we can get ≤ 5¢/kwh PPAs up to 30gw?

- Atacama already had 3¢/kwh in 2006, with PV farms, and storage not needed to Brazil. But:
 - Trump claims panel costs will go up, 9-10¢/kwh, after China stops dumping solar panels*.
 - China-based funds may disagree, and may like to create a big new market for their solar panels
- Solar Reserve soon bids 5¢/kwh for Atacama CSP, with storage, simply by advances studied in DOE/NREL sunshot program. But not proven yet.
- As in 2016, major new unmet technology options worth \$30 million hedge in a \$3 billion investment, updated*.

*www.werbos.com/E/GridIOT.pdf

Opportunity for Gen 2 Stirling

- Lennart Johansson, co-inventor of the 30% engine, was STM chief scientist
- He now has credible technical plan to produce 50% engine, for affordable mass production in existing plants.
- The engine can be used in solar orchards but also to process waste, waste heat, and in cars and trucks, where it offers fuel flexibility, whole cycle
- Cost to demo manufacturable 50% for waste or cars: \$1 million "first tranche." \$10 million for solar tree demo with mass-producible "trees."

Gen 3 Stirling

- Al Sobey, former GM Division Director, leads group with patent on new compressor, which, like Brayton 3 turbine, gets rid of pistons
- Inverting it, with modern manufacturable materials for efficiency and heat pipes, suggests 50-60% efficiency versus small Brayton only 36%.
- Search on ("PDT LLC" Brock) for clues
- Sobey knows how small retooling of existing underused auto engine factories could mass produce their designs in about a year if go ahead...

JTEC Johnson R&D

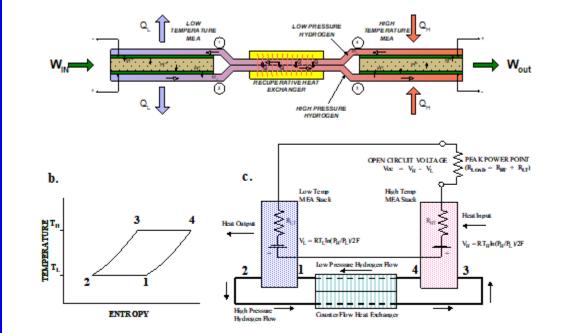
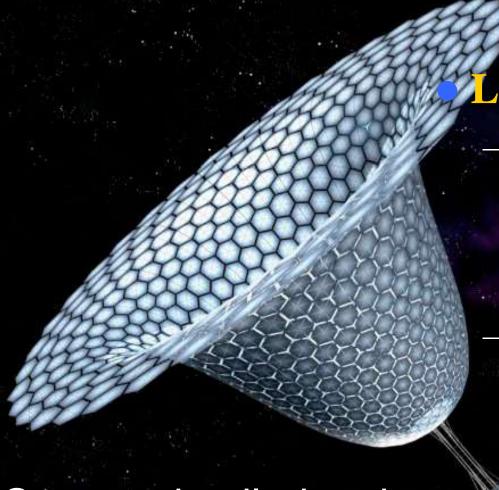
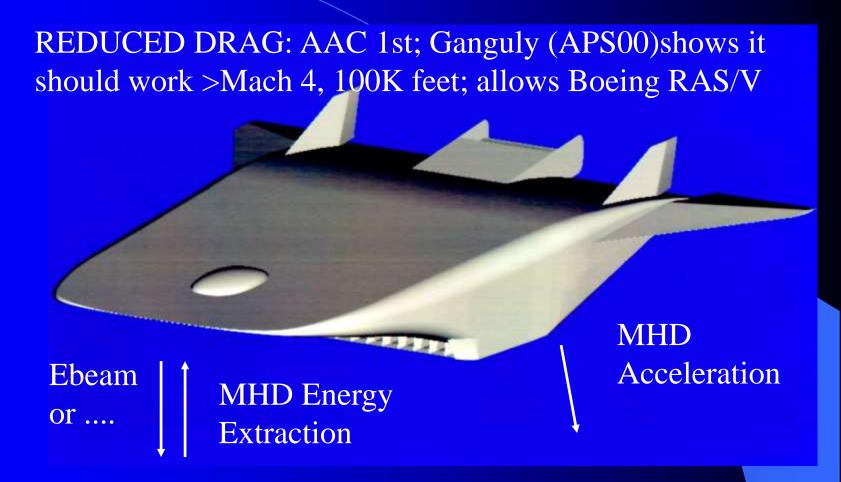



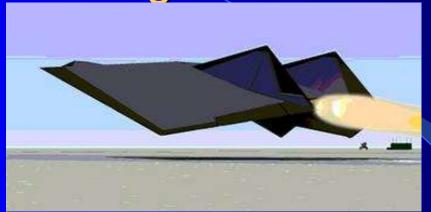
Figure 3: (a) JTEC Functional diagram (b) Temperature Entropy Diagram for Ericsson Cycle (c) JTEC Circuit Schematic

- 50% risk, high potential
- No solid moving parts, has had NSF and NASA \$
- Needs work but simulations show might get 70%


Links from nss.org/EU:

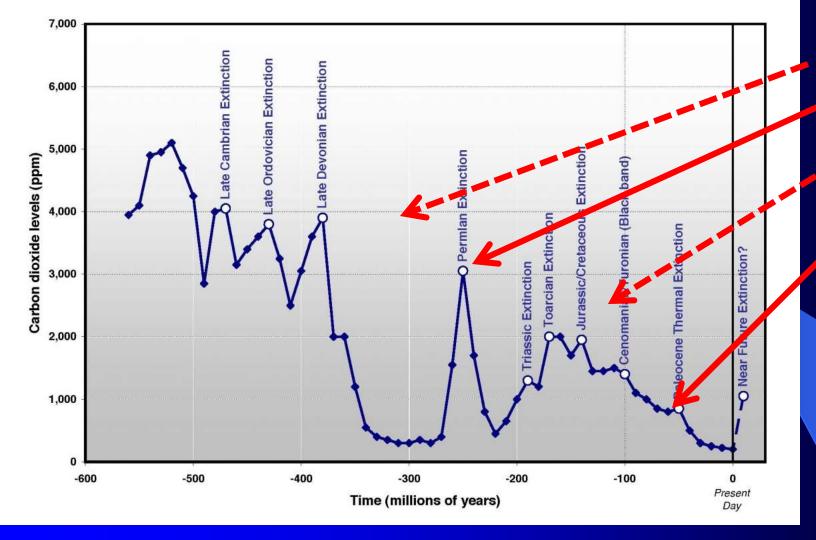
- NIAC Report: New Design for 9¢/kwh if launch costs down to \$500/kg-LEO
- DARPA XS-1

Technology could get us to ≤\$500/kg-LEO


See my detailed review in *Ad Astra*, summer 2014

Plasma Hypersonics: ANSER/Chase NSF\$

Best plasma theory predicts new Princeton design will allow ramjets to reach Mach 12, scram much more... Ames and Chase (ANSER) whole-system SSTO designs...


Unexpected Outcome: Near-Term Design Has Passed Tough Peer Review, Scrutiny

- Advanced RLV designs require use/enhancement of endangered off-the-shelf legacy technology
- Need Big vehicle to minimize \$/lb (initial \$200/lb REAL)
 - 1.5 million pounds, \$10-15 billion, not a small business
- Horizontal takeoff essential for aircraft operations (see also Mueller 60's) and for big-wing lower heat load on re-entry
- Design allows use of formerly black hot structures technology instead of flaky tiles, ablative structures, hard-to-control slush
- Project chart 4 years, AF mission model enough for profit

Lifeboat Foundation Studies: Extinction of Human Species Quite Possible if Top Decision Makers Unconsciously **Assume and Implement** Obsolete Paradigms for IT!!!

H2S in air And Radiation Enough To kill All humans

- NSF Geosciences sponsored best data on past:
- Graph from Peter Ward, Under a Green Sky, adapted by Englander. Ward theory half right.

Will Euxinia Kill All Humans? How Big is the Risk, How Soon? Dr.Paul J. Werbos

- Research Program Director, National Science Foundation 1988-2015 ("AI", power grids, quantum)
- Detailed to Senator Specter/EPW in 2009
- Search on "Werbos" at youtube
- Still active in IEEE and many other professional groups like Chile Solar Energy Research Consortium

But in 40-100 years, Ward's gut might prove true if this continues...

Big new push in China. Unlike biofuel, clathrates 10-20 times as much GHG per energy, to atmosphere or, worse, to ocean euxinia direct (anoxia in Pacific direct to South China Sea).

We are in a race!!!!

Image credit: Live Science