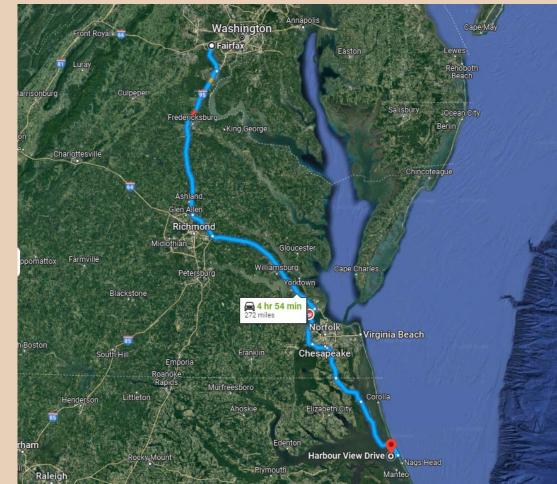
# Electric Vehicle Power Beaming

By Neil Sorkin

#### Table of Contents





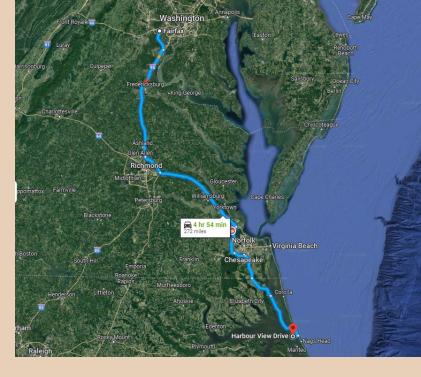

Gasvs Electricity

 $\left( 01\right)$ 



Ē

#### Fairfax, VA to OBX House



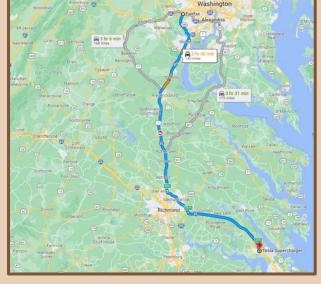

\*





272 Miles **Trip Distance** 2007Hyundai Sonata Avg. 23 MPG \$52.39 @ \$4.43 / gallon 4h 54m



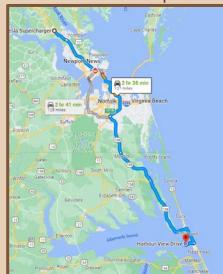





Trip Distance

#### 2020 Tesla Model X Long Range

108 city / 101 highway MPGe 25 Minutes Charging






#### Diversion to Supercharge

\$22.41 @ ¢25 /kW h 5h 19m



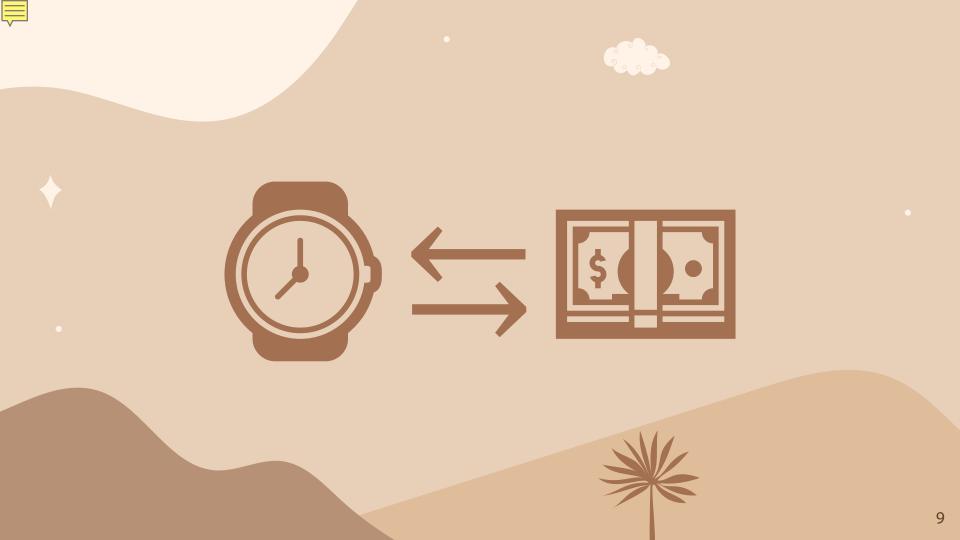




### Trip Comparison



#### 2007Hyundai Sonata


#### 2020 Tesla Model X Long Range

Fuel Cost: \$52.39 Time: 4h 54m Fuel Cost: \$22.41 Time: 5h 19m Time Fueling: \$27.08 Total: \$49.49



Time Difference Billed at \$65/hour: 25m \* \$65/hr = \$27.08

\$65/hour is average hourly salary of EV owners





# Problem Statement

(02)

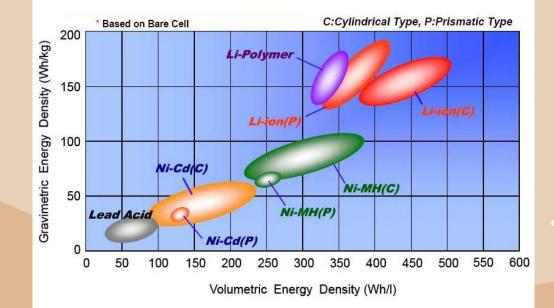
 $\sim$ 



#### EVs-Two Problems

#### Range

At all price levels, finding an EV that can rival gas range is difficult.


#### Charge Speed

Liquid gasoline transfers energy much more quickly than the fastest chargers.



### Range Potential Solutions

- Bigger battery
  - Adds weight
  - High cost
- More energy dense battery
  - Battery technology requires lots of time, research, and money to improve



Gasoline Volumetric Energy Density: 9700 W h/l

### Charge Speed Potential Solutions

- Charge faster
  - Degrades battery
  - Reduces lifetime of battery
- Battery swap
  - Battery does not live with original owner
  - A swap could result in receiving a "worse" battery
    - Multiple battery configurations





 $\left(03\right)$ 

 $\sim$ 

#### Target Market

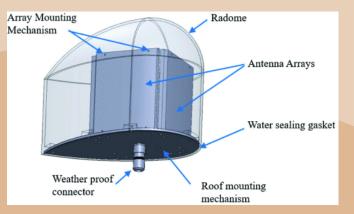
- 4-wheel EVs
- Vacation or long trip
- Interstates only



46,876 miles of US interstate

highlighted in red

## German Electric Trucking Cables


- \$5 million per mile
- Very high efficiency
- Single lane
- Cannot be used by cars



#### Components

#### • Power beaming turrets

• Roof-mounted receivers



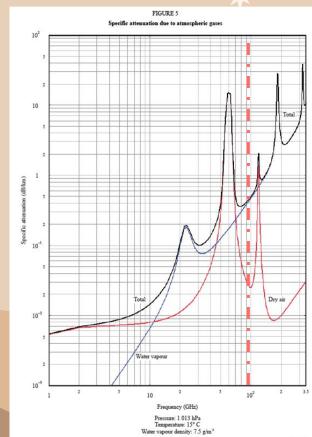
#### Car Mounted Radome Design

D. T. R. Liang, M. C. Tan, M. Li, Q. H. Abbasi and M. Imran, "Radome Design with Improved Aerodynamics and Radiation for Smart Antennas in Automotive Applications," 2019 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2019, pp. 1-3, doi: 10.1109/RFIT.2019.8929217.



## Power Beaming Turrets

- Frequency: 94 GHz, W band
- Target Power Level: 24 kW
  - Based off of 2022 Nissan Leaf at 70 mph
- Line-of-sight
- Pan-tilt tracking of vehicles
- Parabolic antenna
  - Minimal side lobe
  - 3m diameter
  - High gain
  - $\circ$  0.07° Half-Power Beam W idth
- Radome
  - W eather protection




mW ave HRP3-940, 0.9m diameter, W band

Swing Radius

### 94 GHz Frequency Selection

- Acceptable atmospheric losses
- Tight beam
- Lots of human effects research from Active Denial System
  - Heats outer 1/64th of an inch of skin
  - No permanent damage



### Active Denial System

- Frequency: 95 GHz
- 200 kW draw, 100 kW beamed
- Steerable
- 1.3 m<sup>2</sup> antenna
- VGB-8095 Gyrotron



# Tracking + Safety

- Pan-tilt tracking unit
  - High resolution
- Local GPS and transponder based system
  - Precise position can be determined using the network of turrets
  - Transponder pings vehicle location
  - Signals want for beamed power
- Detects beam entry
  - Predicts bird path entry
  - Shuts off beam if power level changes unexpectedly
- Metal vehicle roof provides shielding





#### **Roof-Mounted Receiver**

#### **Option 1 - Parabolic Antenna**

- 1m diameter
- Higher RF-to-DC efficiency

#### **Option 2 - Phased Array**

- Smooth with roof, aerodynamic
- Lower RF-to-DC efficiency
- Better manufacturer integration

22

Per-vehicle, options may differ in utility





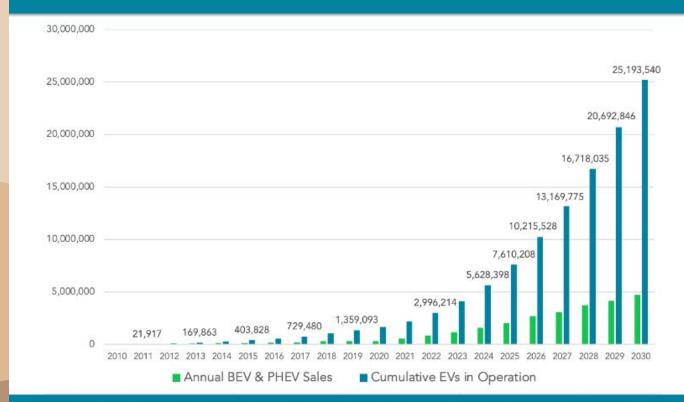
F

Kitsap Composites-HAMMR 2 Radome





° ° ° °




#### *Financials*

 $\widetilde{}$ 

#### Market Size

#### Cumulative US Electric Vehicles In Operation: 2010-2030



Historical Data: GoodCarBadCar.net, InsideEVs, IHS Markit | Auto Manufacturers Alliance, Advanced Technology Sales Dashboard | Research, Forecast & Chart: Loren McDonald / EVAdoption

# For calculation: 20 million customers

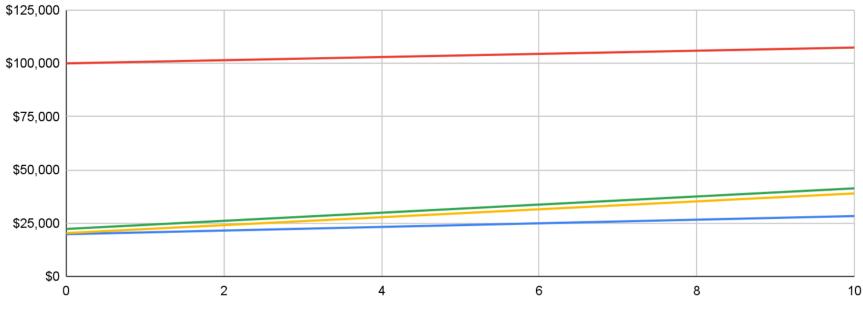
#### Cost Factors

Ę

| Average Distance Traveled by American |          |                                     |         |  |
|---------------------------------------|----------|-------------------------------------|---------|--|
| Driver (mi) Per Year                  | 14263    | Work Miles Proportion               | 0.9     |  |
| Work Miles                            | 12836.7  | Work City Proportion                | 0.5     |  |
| Work City Miles                       | 6418.35  | Work Highway Proportion             | 0.5     |  |
| Work Highway Miles                    | 6418.35  | Travel Miles Proportion             | 0.1     |  |
| Travel Miles                          | 1426.3   | Travel City Proportion              | 0.15    |  |
| Travel City Miles                     | 213.945  | Travel Highway Proportion           | 0.85    |  |
| Travel Highway Miles                  | 1212.355 | \$/kWh at home/grid/L2              | \$0.11  |  |
|                                       |          | \$/kWh beamed                       | \$0.85  |  |
|                                       |          | Cost per kWh L3                     | \$0.43  |  |
|                                       |          | Waiting time value (L2/3)<br>(\$/h) | \$65.00 |  |
|                                       |          | Level 3 Power level (kW)            | 150     |  |
|                                       |          | Level 2 Power level (kW)            | 12      |  |
|                                       |          | Cost per gallon                     | \$4.59  |  |
|                                       |          | DC-DC                               | 26%     |  |

#### Gasvs Electric Cost

| Car Model           | Vehicle Type | MPG(e) City | MPG(e) Highway | Work Miles Cost | Travel Miles Cost | Annual Fuel Cost |
|---------------------|--------------|-------------|----------------|-----------------|-------------------|------------------|
| 2022 Nissan Leaf    | EV           | 118         | 97             | \$465.61        | \$384.29          | \$849.90         |
| 2022 Tesla Model S  | EV           | 124         | 115            | \$415.45        | \$326.98          | \$742.43         |
| 2022 Toyota Corolla | ICE          | 31          | 40             | \$1,687.94      | \$170.91          | \$1,858.85       |
| 2022 Honda Civic    | ICE          | 31          | 38             | \$1,726.73      | \$178.23          | \$1,904.96       |


| Average Distance Traveled by American |          |
|---------------------------------------|----------|
| Driver (mi) Per Year                  | 14263    |
| Work Miles                            | 12836.7  |
| Work City Miles                       | 6418.35  |
| Work Highway Miles                    | 6418.35  |
| Travel Miles                          | 1426.3   |
| Travel City Miles                     | 213.945  |
| Travel Highway Miles                  | 1212.355 |

Electric: Low grid charging, high vacation cost, stable Gas: High (as of 5/25/22), unstable, not eco-friendly

#### GasvsElectric

#### Car Ownership Costs: MSRP plus Fuel Over Time

💻 2022 Nissan Leaf (62 kWh) 🛛 💻 2022 Tesla Model S 🚽 2022 Toyota Corolla 📁 2022 Honda Civic



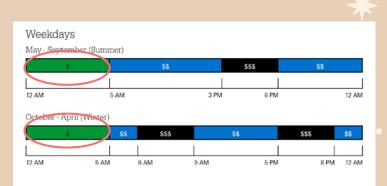
Years Owned

#### Per Turret

## Overall Cost

| Component                    | Price     |
|------------------------------|-----------|
| Pan Tilt Unit                | \$32,200  |
| Dish                         | \$20,000  |
| Tower                        | \$175,000 |
| Communications               | \$10,000  |
| Radome / Shroud              | \$1,627   |
|                              |           |
|                              |           |
| Total                        | \$238,827 |
|                              |           |
| Annual Land Rights Per Tower | \$5,000   |

| Cost Per Turret                                           | \$238,827         |
|-----------------------------------------------------------|-------------------|
| Turret Radius (km)                                        | 0.30              |
| Miles of Interstate                                       | 46,876            |
| Min Highway MPGe to Maintain Charge                       | 97                |
| Top Speed (mph)                                           | 70                |
| Coverage Overlap                                          | 1.00              |
| Avg. Turret Target Power to Car (kW)                      | 24.32             |
| Turrets Needed                                            | 125,732.72        |
| Total Cost                                                | \$30,028,368,591  |
|                                                           |                   |
| Alternatives                                              |                   |
| German Overhead Trucking Cables                           | \$234,380,000,000 |
| Electreon Induction Charging                              | \$89,064,400,000  |
| New Construction Cost, 1 Addl. Lane, Rural Interstate, FL | \$31,291,237,532  |


### **ROI** Potential

| Initial Installation Cost       | \$30,028,368,591 |
|---------------------------------|------------------|
| Avg. Annual Profit per Customer | \$162.03         |
| Annual Lease Cost               | \$628,663,606    |
| Customer Base                   | 20,000,000       |
| Annual Customer Miles Supplied  | 24,247,100,000   |
| Annual Profit                   | \$2,611,952,721  |
| Years to Break Even             | 11.50            |

# UnlocksNew Driving Style

 Enable self-driving at night and sleep on the way to your destination for off-peak rates

 Much better if the kW h price drops from ¢11 / kW h to ¢3 / kW h



#### Holidays and All Weekends



#### Dominion Energy Smart Meter pricing

Summer Pricing for Weekdays, Weekends & Holidays

Review the pricing for the different tiers for the summer months (May - Sept)

|   | Weekday Pricing     | Price per kWh | Weekend & Holiday Pricing | Price per kWh |
|---|---------------------|---------------|---------------------------|---------------|
| Γ | On Peak (\$\$\$)    | \$0.214779    | Off Peak (\$\$)           | \$0.095533    |
|   | Off Peak (SS)       | \$0.095533    | Super Off Peak (\$)       | \$0.079082    |
|   | Super Off Peak (\$) | \$0.079082    |                           |               |

#### Multi-Use Turrets

- Power Beaming
- Cell Tower
- Self-driving "eyes in the sky"



#### Conclusion

- 94 GHz Power Beaming Turrets
  - Target: 4-wheelers
  - Freedom of movement, self-driving future
  - No stopping for fuel, battery as buffer
- Overhead Electric Cables
  - Target: Trucks and buses





# **Thanks!** Doesanyone have any questions?

Presenter: Neil Sorkin

Contact: neilsorkin19@gmail.com

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**.